Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications

Spherical palladium nanocrystals were generated from aqueous Na2[PdCl4] via photosynthetic reactions within green microalgae (Chlorella vulgaris). Electrospun chitosan mats were effective for immobilizing these biogenic nanocrystals, as a material for recycling as a catalyst for the Mizoroki–Heck cross-coupling reaction. This photosynthetically-driven metal transformation system can serve as a good candidate for an environmentally-friendly method for the synthesis of metal nanocatalysts.

[1]  I. R. Harris,et al.  Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307 , 2002, Biotechnology and bioengineering.

[2]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[3]  R. Guerrero Brock Biology of Microorganisms (9th edn). Michael E. Madigan, John M. Martinko, Jack Parker , 2000 .

[4]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[5]  Yongdan Li,et al.  Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: a versatile system for C-C cross-coupling reactions. , 2008, Inorganic chemistry.

[6]  J. Gardea-Torresdey,et al.  Effect of chemical modification of algal carboxyl groups on metal ion binding , 1990 .

[7]  R. Prins,et al.  Foils, Films, and Nanostructured Surfaces: A Comparative XPS and AFM Study of Model Catalyst Surfaces† , 2000 .

[8]  Stephen Mann,et al.  Biomimetic Materials Chemistry , 1995 .

[9]  Mark D. Redwood,et al.  Bio-hydrogen and biomass supported palladium catalyst for energy production and waste minimisation. Ph.D. Thesis. University of Birmingham. , 2007 .

[10]  K. Iyer,et al.  Surface oxygen triggered size change of palladium nano-crystals impedes catalytic efficacy. , 2011, Chemical communications.

[11]  Anushree Malik,et al.  Metal bioremediation through growing cells. , 2004, Environment international.

[12]  A. Melis,et al.  Photobiological hydrogen production: Recent advances and state of the art. , 2011, Bioresource technology.

[13]  E. Guibal,et al.  Interactions of metal ions with chitosan-based sorbents: a review , 2004 .

[14]  S. Arad,et al.  Chelating Properties of Extracellular Polysaccharides from Chlorella spp , 1987, Applied and environmental microbiology.

[15]  Kousaku Ohkawa,et al.  Electrospinning of Chitosan , 2004 .

[16]  M. Taniguchi,et al.  Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. , 2012, Current opinion in plant biology.

[17]  Amy K. Manocchi,et al.  Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  M. Arai,et al.  CATALYST PRODUCT SEPARATION TECHNIQUES IN HECK REACTION , 2001 .

[19]  Jiale Huang,et al.  Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf , 2010 .

[20]  R. Heck,et al.  Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides , 1972 .

[21]  K. Deplanche,et al.  Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery? , 2010, Biotechnology Letters.

[22]  G. Southam,et al.  Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[23]  Huajian Gao,et al.  Advance and Prospect of Bionanomaterials , 2003, Biotechnology progress.

[24]  K. Iyer,et al.  Scalable synthesis of catalysts for the Mizoroki–Heck cross coupling reaction: palladium nanoparticles assembled in a polymeric nanosphere , 2011 .

[25]  K. Iyer,et al.  Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. , 2011, Chemical communications.

[26]  A. Tressaud,et al.  X‐Ray Photoelectron Spectroscopy of Palladium Fluorides , 1986 .

[27]  Amy K. Manocchi,et al.  Viral-templated palladium nanocatalysts for Suzuki coupling reaction , 2011 .

[28]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[29]  K. Mori,et al.  Arylation of Olefin with Aryl Iodide Catalyzed by Palladium , 1971 .

[30]  C. Huang,et al.  The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae , 1990 .

[31]  Lynne E. Macaskie,et al.  Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria , 1998, Applied and Environmental Microbiology.

[32]  G. Zajac,et al.  An XPS study of the UV photoreduction of transition and noble metal oxides , 1986 .

[33]  V. Majidi,et al.  Monitoring the cellular response of Stichococcus bacillaris to exposure of several different metals using in vivo 31P NMR and other spectroscopic techniques. , 1994, Environmental science & technology.

[34]  Rajender S. Varma,et al.  Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract , 2008 .

[35]  F. Quignard,et al.  Chitosan supported phthalocyanine complexes: Bifunctional catalysts with basic and oxidation active sites , 2006 .

[36]  R. McPherson,et al.  Selective recovery of gold and other metal ions from an algal biomass. , 1986, Environmental science & technology.

[37]  Stuart Harrad,et al.  Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic catalyst. , 2007, Journal of environmental monitoring : JEM.

[38]  Gokare A. Ravishankar,et al.  Phytoremediation—A Novel and Promising Approach for Environmental Clean-up , 2004, Critical reviews in biotechnology.