Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers

The polarization properties of long-period gratings inscribed in highly birefringent photonic crystal fibers are investigated in the context of a multipole method analysis. It is demonstrated that by proper design such fibers may act as selective polarization elements, showing an ample separation of the resonance peaks corresponding to the two orthogonal polarization states. Furthermore, the infiltration of the fiber's capillaries with an isotropic liquid may lead to extensive tuning of the resonant wavelengths. A tuning efficiency of up to 10 nm/°C is demonstrated in the case of a typical infiltrated birefringent photonic crystal fiber.

[1]  Tadeusz Martynkien,et al.  Polarizing photonic crystal fibers with wide operation range , 2004 .

[2]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. II. Implementation and results , 2002 .

[3]  E. Kriezis,et al.  Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance. , 2006, Optics express.

[4]  G. Hocker Fiber-optic sensing of pressure and temperature. , 1979, Applied optics.

[5]  B.J. Eggleton,et al.  Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings , 2000, IEEE Photonics Technology Letters.

[6]  David J. Webb,et al.  Temperature insensitive long-period grating sensors in photonic crystal fiber , 2004, Photonics North.

[7]  P. Andrés,et al.  Designing the properties of dispersion-flattened photonic crystal fibers. , 2001, Optics express.

[8]  Hong C. Nguyen,et al.  Confinement loss in adiabatic photonic crystal fiber tapers , 2006 .

[9]  Thomas Tanggaard Alkeskjold,et al.  Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. , 2007, Optics express.

[10]  E. Kriezis,et al.  Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers , 2006, Journal of Lightwave Technology.

[11]  David J. Webb,et al.  Temperature insensitive long-period grating sensors in photonic crystal fibre , 2004 .

[12]  Gilles Renversez,et al.  Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size. , 2005, Optics Letters.

[13]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[14]  R. Laming,et al.  High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers , 1997, IEEE Photonics Technology Letters.

[15]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[16]  Yiping Wang,et al.  In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber. , 2007, Optics letters.

[17]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. I. Formulation , 2003 .

[18]  T. Strasser,et al.  Grating resonances in air-silica microstructured optical fibers. , 1999, Optics letters.

[19]  Jonathan C. Knight,et al.  Photonic crystal fibres , 2003, Nature.

[20]  B J Eggleton,et al.  Tuning properties of long period gratings in photonic bandgap fibers. , 2006, Optics letters.

[21]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[22]  J. Judkins,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[23]  K. Hansen,et al.  Dispersion flattened hybrid-core nonlinear photonic crystal fiber. , 2003, Optics express.

[24]  Sang Bae Lee,et al.  Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters , 2003, IEEE Photonics Technology Letters.

[25]  Jan Wojcik,et al.  Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibers , 2005, International Conference on Optical Fibre Sensors.

[26]  B.J. Eggleton,et al.  Cladding-mode-resonances in air-silica microstructure optical fibers , 2000, Journal of Lightwave Technology.

[27]  S. James,et al.  Optical fibre long-period grating sensors: characteristics and application , 2003 .

[28]  Thomas K. Gaylord,et al.  Long-period fibre grating fabrication with focused CO2 laser pulses , 1998 .

[29]  S. Kawanishi,et al.  Optical properties of a low-loss polarization-maintaining photonic crystal fiber. , 2001, Optics express.

[30]  Dispersion control with use of long-period fiber gratings. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Harald Giessen,et al.  Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. , 2006, Optics express.

[32]  Jacob Riis Folkenberg,et al.  Modal cutoff and the V parameter in photonic crystal fibers. , 2003, Optics letters.

[33]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[34]  B. Lee,et al.  Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. , 2004, Optics letters.

[35]  J. Qian,et al.  Gain flattening fibre filters using phase-shifted long period fibre gratings , 1998 .

[36]  J. Bayon,et al.  Long-period fibre grating as a wavelength selective polarisation element , 1997 .

[37]  P S Westbrook,et al.  Highly tunable birefringent microstructured optical fiber. , 2002, Optics letters.

[38]  Daniel Maystre,et al.  Microstructured optical fibers: where's the edge? , 2002, Optics express.

[39]  Michael A. Davis,et al.  Fiber grating sensors , 1997 .

[40]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[41]  J. Jensen,et al.  Photonic crystal fiber long-period gratings for biochemical sensing. , 2006, Optics express.

[42]  P. McIsaac Symmetry-Induced Modal Characteristics of Uniform Waveguides --- I: Summary of Results , 1975 .

[43]  T A Birks,et al.  Structural long-period gratings in photonic crystal fibers. , 2002, Optics letters.