NetworkAI: An Intelligent Network Architecture for Self-Learning Control Strategies in Software Defined Networks

The past few years have witnessed a wide deployment of software defined networks facilitating a separation of the control plane from the forwarding plane. However, the work on the control plane largely relies on a manual process in configuring forwarding strategies. To address this issue, this paper presents NetworkAI, an intelligent architecture for self-learning control strategies in software defined networking networks. NetworkAI employs deep reinforcement learning and incorporates network monitoring technologies, such as the in-band network telemetry to dynamically generate control policies and produces a near optimal decision. Simulation results demonstrated the effectiveness of NetworkAI.

[1]  Salman Yussof,et al.  The effect of GA parameters on the performance of GA-based QoS routing algorithm , 2008 .

[2]  Laizhong Cui,et al.  When big data meets software-defined networking: SDN for big data and big data for SDN , 2016, IEEE Network.

[3]  Ming Zhang,et al.  Efficiently Delivering Online Services over Integrated Infrastructure , 2016, NSDI.

[4]  Vyas Sekar,et al.  Via: Improving Internet Telephony Call Quality Using Predictive Relay Selection , 2016, SIGCOMM.

[5]  Xu Chen,et al.  A Novel Framework of Data-Driven Networking , 2016, IEEE Access.

[6]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[7]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[8]  Yanhui Geng,et al.  CODA: Toward Automatically Identifying and Scheduling Coflows in the Dark , 2016, SIGCOMM.

[9]  Jim Esch,et al.  Software-Defined Networking: A Comprehensive Survey , 2015, Proc. IEEE.

[10]  Anirudh Sivaraman,et al.  In-band Network Telemetry via Programmable Dataplanes , 2015 .

[11]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[12]  Ian F. Akyildiz,et al.  QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach , 2016, 2016 IEEE International Conference on Services Computing (SCC).

[13]  Arjan Durresi,et al.  Quality of Service (QoS) in Software Defined Networking (SDN): A survey , 2017, J. Netw. Comput. Appl..

[14]  Sergey Levine,et al.  Continuous Deep Q-Learning with Model-based Acceleration , 2016, ICML.

[15]  Shijie Sun,et al.  Pytheas: Enabling Data-Driven Quality of Experience Optimization Using Group-Based Exploration-Exploitation , 2017, NSDI.

[16]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[17]  Michael L. Littman,et al.  Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach , 1993, NIPS.

[18]  Soroush Haeri,et al.  Virtual Network Embedding via Monte Carlo Tree Search , 2018, IEEE Transactions on Cybernetics.

[19]  Jean C. Walrand,et al.  Knowledge-Defined Networking: Modelització de la xarxa a través de l’aprenentatge automàtic i la inferència , 2016 .

[20]  Gunjan Tank,et al.  Software-Defined Networking-The New Norm for Networks , 2012 .

[21]  Anil A. Bharath,et al.  Deep Reinforcement Learning: A Brief Survey , 2017, IEEE Signal Processing Magazine.

[22]  Xi Liu,et al.  C3: Internet-Scale Control Plane for Video Quality Optimization , 2015, NSDI.

[23]  Hongzi Mao,et al.  Neural Adaptive Video Streaming with Pensieve , 2017, SIGCOMM.

[24]  Srikanth Kandula,et al.  Resource Management with Deep Reinforcement Learning , 2016, HotNets.

[25]  Andrew W. Moore,et al.  Internet traffic classification using bayesian analysis techniques , 2005, SIGMETRICS '05.

[26]  Srinivasan Seshan,et al.  A network measurement architecture for adaptive applications , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[27]  George Varghese,et al.  P4: programming protocol-independent packet processors , 2013, CCRV.

[28]  Vyas Sekar,et al.  Unleashing the Potential of Data-Driven Networking , 2017, COMSNETS.

[29]  A. Murat Tekalp,et al.  OpenQoS: An OpenFlow controller design for multimedia delivery with end-to-end Quality of Service over Software-Defined Networks , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[30]  Chen Li,et al.  The research on traffic sign recognition based on deep learning , 2016, 2016 16th International Symposium on Communications and Information Technologies (ISCIT).

[31]  Grenville J. Armitage,et al.  A survey of techniques for internet traffic classification using machine learning , 2008, IEEE Communications Surveys & Tutorials.

[32]  Sakir Sezer,et al.  Queen ' s University Belfast-Research Portal Are We Ready for SDN ? Implementation Challenges for Software-Defined Networks , 2016 .