Optimal control of vector-borne diseases: Treatment and prevention
暂无分享,去创建一个
[1] K. W. Blayneh,et al. A discrete SIS-model for a vector-transmitted disease , 2006 .
[2] Suzanne Lenhart,et al. Optimal control of treatments in a two-strain tuberculosis model , 2002 .
[3] Y. Benoist,et al. Flots d’Anosov à distributions stable et instable différentiables , 1990 .
[4] NAKUL CHITNIS,et al. Bifurcation Analysis of a Mathematical Model for Malaria Transmission , 2006, SIAM J. Appl. Math..
[5] H M Yang,et al. Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). , 2000, Revista de saude publica.
[6] James Serrin,et al. Gradient Estimates for Solutions of Nonlinear Elliptic and Parabolic Equations , 1971 .
[7] Carlos Castillo-Chavez,et al. Mathematical approaches for emerging and reemerging infectious diseases , 2002 .
[8] W. Fleming,et al. Deterministic and Stochastic Optimal Control , 1975 .
[9] B. Adams,et al. HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .
[10] O. Diekmann,et al. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .
[11] J. Velasco-Hernández,et al. Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.
[12] Huaiping Zhu,et al. A mathematical model for assessing control strategies against West Nile virus , 2005, Bulletin of mathematical biology.
[13] Victor M. Becerra,et al. Optimal control , 2008, Scholarpedia.
[14] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[15] Alan S. Robinson,et al. Prospects for control of African trypanosomiasis by tsetse vector manipulation. , 2001, Trends in parasitology.
[16] D. Kirschner,et al. Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.
[17] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[18] Umr Cnrs,et al. A MATHEMATICAL MODEL FOR THE PROPAGATION OF A HANTAVIRUS IN STRUCTURED POPULATIONS , 2004 .
[19] A. Roddam. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation O Diekmann and JAP Heesterbeek, 2000, Chichester: John Wiley pp. 303, £39.95. ISBN 0-471-49241-8 , 2001 .
[20] E. Blum,et al. The Mathematical Theory of Optimal Processes. , 1963 .
[21] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[22] J. Koella,et al. Epidemiological models for the spread of anti-malarial resistance , 2003, Malaria Journal.
[23] Shigui Ruan,et al. Mathematical Biology Digital Object Identifier (DOI): , 2000 .
[24] Lourdes Esteva,et al. A model for dengue disease with variable human population , 1999, Journal of mathematical biology.