Optimal control of vector-borne diseases: Treatment and prevention

In this paper we study the dynamics of a vector-transmitted disease using two deterministic models. First, we look at time dependent prevention and treatment efforts, where optimal control theory is applied. Using analytical and numerical techniques, it is shown that there are cost effective control efforts for treatment of hosts and prevention of host-vector contacts. Then, we considered the autonomous counter part of the mode and we established global stability results based on the reproductive number. The model is applied to study the effects of prevention and treatment controls on a malaria disease while keeping the implementation cost at a minimum. Numerical results indicate the effects of the two controls (prevention and treatment) in lowering exposed and infected members of each of the populations. The study also highlights the effects of some model parameters on the results.

[1]  K. W. Blayneh,et al.  A discrete SIS-model for a vector-transmitted disease , 2006 .

[2]  Suzanne Lenhart,et al.  Optimal control of treatments in a two-strain tuberculosis model , 2002 .

[3]  Y. Benoist,et al.  Flots d’Anosov à distributions stable et instable différentiables , 1990 .

[4]  NAKUL CHITNIS,et al.  Bifurcation Analysis of a Mathematical Model for Malaria Transmission , 2006, SIAM J. Appl. Math..

[5]  H M Yang,et al.  Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). , 2000, Revista de saude publica.

[6]  James Serrin,et al.  Gradient Estimates for Solutions of Nonlinear Elliptic and Parabolic Equations , 1971 .

[7]  Carlos Castillo-Chavez,et al.  Mathematical approaches for emerging and reemerging infectious diseases , 2002 .

[8]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[9]  B. Adams,et al.  HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .

[10]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[11]  J. Velasco-Hernández,et al.  Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.

[12]  Huaiping Zhu,et al.  A mathematical model for assessing control strategies against West Nile virus , 2005, Bulletin of mathematical biology.

[13]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[14]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[15]  Alan S. Robinson,et al.  Prospects for control of African trypanosomiasis by tsetse vector manipulation. , 2001, Trends in parasitology.

[16]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[17]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[18]  Umr Cnrs,et al.  A MATHEMATICAL MODEL FOR THE PROPAGATION OF A HANTAVIRUS IN STRUCTURED POPULATIONS , 2004 .

[19]  A. Roddam Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation O Diekmann and JAP Heesterbeek, 2000, Chichester: John Wiley pp. 303, £39.95. ISBN 0-471-49241-8 , 2001 .

[20]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  J. Koella,et al.  Epidemiological models for the spread of anti-malarial resistance , 2003, Malaria Journal.

[23]  Shigui Ruan,et al.  Mathematical Biology Digital Object Identifier (DOI): , 2000 .

[24]  Lourdes Esteva,et al.  A model for dengue disease with variable human population , 1999, Journal of mathematical biology.