First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87’s large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | K. Souccar | L. Ho | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | S. Ikeda | J. Carlstrom | D. Michalik | A. Nadolski | D. James | P. Koch | L. Rezzolla | C. Kramer | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | F. Schloerb | E. Fomalont | Jongsoo Kim | A. Eckart | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | R. Lu | A. Broderick | M. Honma | T. Oyama | R. Primiani | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | L. Vertatschitsch | J. Zensus | D. Haggard | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | Ziyan Zhu | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | L. Shao | A. Marscher | S. Jorstad | José L. Gómez | U. Pen | J. Mao | D. Bintley | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | D. Broguière | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | H. Nagai | Masanori Nakamura | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | N. Wex | R. Wharton | M. Wielgus | G. Wong | Qingwen Wu | Z. Younsi | F. Yuan | Ye-Fei Yuan | Shan-Shan Zhao | J. Anczarski | F. Baganoff | J. Farah | Z. Meyer-Zhao | J. Neilsen | H. Nishioka | M. Nowak | N. Pradel | P. Yamaguchi | Shuo Zhang | H. V. van Langevelde | J. Conway | M. De Laurentis | Michael Kramer | F. Özel | R. Rao | Zhiqiang Shen | I. V. van Bemmel | D. V. van Rossum | Jan Wagner | C. Kramer | Cornelia Mul̈ler | J. Gómez | Z. Li 李 | D. Broguiere | Y. Chen 陈 | M. Gu 顾 | L. Ho 何 | Lei 磊 Huang 黄 | Wu 悟 Jiang 江 | R. Lu 路 | J. Mao 毛 | Z. Shen 沈 | Q. Wu 吴 | Y. Yuan 袁 | Shuo Zhang | M. Nakamura | C. Goddi | Lijing Shao | J. Wagner | F. Yuan 袁 | J. Cordes | G. Bower | Y. Li 李 | Cornelia Mul̈ler | R. García | M. Kramer | A. Raymond | L. Huang 黄 | J. Gómez | David Ball | Shiro Ikeda | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | I. van Bemmel | Daniel R. van Rossum | D. Hughes

[1]  H. Falcke,et al.  How to tell an accreting boson star from a black hole , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  L. Rezzolla,et al.  Using evolutionary algorithms to model relativistic jets , 2019, Astronomy & Astrophysics.

[3]  M. Kino,et al.  Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet , 2018, The Astrophysical Journal.

[4]  R. Keppens,et al.  Relativistic resistive magnetohydrodynamic reconnection and plasmoid formation in merging flux tubes , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  R. Narayan,et al.  Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87 , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[7]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[8]  E. Quataert,et al.  Two-temperature GRRMHD Simulations of M87 , 2018, The Astrophysical Journal.

[9]  A. Schekochihin,et al.  Thermal disequilibration of ions and electrons by collisionless plasma turbulence , 2018, Proceedings of the National Academy of Sciences.

[10]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[11]  Yajie Yuan,et al.  Physics of Pair Producing Gaps in Black Hole Magnetospheres. II. General Relativity , 2018, The Astrophysical Journal.

[12]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[13]  J. Dexter,et al.  The impact of Faraday effects on polarized black hole images of Sagittarius A , 2018, 1805.02652.

[14]  Zhaoyi Xu,et al.  Black hole shadow of Sgr A* in dark matter halo , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  R. Narayan,et al.  The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A* , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  H. Falcke,et al.  The current ability to test theories of gravity with black hole shadows , 2018, Nature Astronomy.

[17]  A. Levinson,et al.  Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole , 2018, Astronomy & Astrophysics.

[18]  R. Narayan,et al.  Shadows of spherically symmetric black holes and naked singularities , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[20]  Jean-Charles Cuillandre,et al.  The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) , 2018, 1802.05526.

[21]  Fast-spinning Black Holes Inferred from Symmetrically Limb-brightened Radio Jets , 2018, The Astrophysical Journal.

[22]  J. Davelaar,et al.  RAPTOR I: Time-dependent radiative transfer in arbitrary spacetimes , 2018, 1801.10452.

[23]  Heino Falcke,et al.  General relativistic magnetohydrodynamical κ-jet models for Sagittarius A , 2017, 1712.02266.

[24]  C. Gammie,et al.  IPOLE - semi-analytic scheme for relativistic polarized radiative transport , 2017, 1712.03057.

[25]  Ernesto F. Eiroa,et al.  Shadow cast by rotating braneworld black holes with a cosmological constant , 2017, 1711.08380.

[26]  E. Ros,et al.  Radio observations of active galactic nuclei with mm-VLBI , 2017, The Astronomy and Astrophysics Review.

[27]  R. Narayan,et al.  Electron and Proton Heating in Transrelativistic Magnetic Reconnection , 2017, 1708.04627.

[28]  B. Singh,et al.  Shadows of rotating five-dimensional charged EMCS black holes , 2017, The European Physical Journal C.

[29]  K. Asada,et al.  Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales , 2017, 1707.07023.

[30]  Berkeley,et al.  Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations , 2017, 1707.06619.

[31]  J. Algaba,et al.  Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales , 2017, 1706.02066.

[32]  A. Tchekhovskoy,et al.  How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? , 2017, 1706.01533.

[33]  D. Psaltis,et al.  The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows , 2017, 1705.06293.

[34]  A. Eckart,et al.  A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling , 2017 .

[35]  R. Narayan,et al.  Evolving non-thermal electrons in simulations of black hole accretion , 2017, 1704.05092.

[36]  H. Falcke,et al.  Faraday rotation in GRMHD simulations of the jet launching zone of M87 , 2017, 1703.02390.

[37]  A. Tchekhovskoy,et al.  The disc-jet symbiosis emerges: Modelling the emission of Sagittarius A* with electron thermodynamics , 2016, 1611.09365.

[38]  R. Narayan,et al.  Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity , 2016, 1605.03184.

[39]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[40]  S. Noble,et al.  rHARM: ACCRETION AND EJECTION IN RESISTIVE GR-MHD , 2016, 1610.04445.

[41]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[42]  C. Saxton,et al.  Dark matter concentrations in galactic nuclei according to polytropic models , 2016, 1606.07066.

[43]  F. Yuan,et al.  EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS , 2016, 1606.06029.

[44]  S. Landi,et al.  Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited , 2016, 1605.06331.

[45]  R. Brustein,et al.  Black holes as collapsed polymers , 2016, 1602.07706.

[46]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[47]  H. Pu,et al.  ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES , 2015, 1512.05026.

[48]  M. Kino,et al.  HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII , 2015, 1512.03783.

[49]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[50]  A. Tchekhovskoy,et al.  Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion , 2015, 1509.04717.

[51]  M. Gurwell,et al.  A BLACK HOLE MASS-VARIABILITY TIMESCALE CORRELATION AT SUBMILLIMETER WAVELENGTHS , 2015, 1508.06603.

[52]  E. Quataert,et al.  AN EXTENDED MAGNETOHYDRODYNAMICS MODEL FOR RELATIVISTIC WEAKLY COLLISIONAL PLASMAS , 2015, 1508.00878.

[53]  C. Gammie,et al.  bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT , 2015, 1505.05119.

[54]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[55]  M. Kino,et al.  MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM , 2015, 1502.03900.

[56]  R. Narayan,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. III. REVISITING WIND PROPERTIES USING THE TRAJECTORY APPROACH , 2015, 1501.01197.

[57]  J. Moffat,et al.  Black holes in modified gravity (MOG) , 2014, 1412.5424.

[58]  M. Kino,et al.  RELATIVISTIC ELECTRONS AND MAGNETIC FIELDS OF THE M87 JET ON THE ∼10 SCHWARZSCHILD RADII SCALE , 2014, 1403.0650.

[59]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[60]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[61]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[62]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[63]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[64]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[65]  R. Narayan,et al.  Distinguishing black holes from naked singularities through their accretion disc properties , 2013, 1304.7331.

[66]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[67]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[68]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[69]  J. Dexter,et al.  Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission , 2012, 1204.4454.

[70]  General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? , 2012 .

[71]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[72]  J. Anderson,et al.  M 87 at metre wavelengths: the LOFAR picture , 2012, 1210.1346.

[73]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[74]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[75]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[76]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[77]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[78]  C. Gammie,et al.  NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS , 2011 .

[79]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[80]  C. Gammie,et al.  PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI , 2011, 1104.2042.

[81]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[82]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[83]  L. Ho,et al.  ON THE ORIGIN OF ULTRAVIOLET EMISSION AND THE ACCRETION MODEL OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI , 2010, 1011.1962.

[84]  G. Howes A prescription for the turbulent heating of astrophysical plasmas , 2010, 1009.4212.

[85]  John P. Blakeslee,et al.  The inner halo of M 87: a first direct view of the red-giant population , 2010, 1009.3202.

[86]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[87]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[88]  Ken-ichi Nishikawa,et al.  A method for incorporating the Kerr-Schild metric in electromagnetic particle-in-cell code , 2009, Comput. Phys. Commun..

[89]  C. Gammie,et al.  grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT , 2009, 0909.0708.

[90]  Masanori Iye,et al.  National Astronomical Observatory of Japan , 2009, 0908.0369.

[91]  Cosmology,et al.  SPINS OF SUPERMASSIVE BLACK HOLES IN M87. II. FULLY GENERAL RELATIVISTIC CALCULATIONS , 2009, 0904.2335.

[92]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[93]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[94]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[95]  Oscar Reula,et al.  Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas , 2008, 0810.1838.

[96]  P. Chris Fragile,et al.  Epicyclic Motions and Standing Shocks in Numerically Simulated Tilted Black Hole Accretion Disks , 2008, 0807.2453.

[97]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[98]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[99]  L. Rezzolla,et al.  How to tell a gravastar from a black hole , 2007, 0706.1513.

[100]  Harvard University,et al.  Disc–jet coupling in black hole accretion systems – I. General relativistic magnetohydrodynamical models , 2006, astro-ph/0607575.

[101]  D. Lynden-Bell Magnetic jets from swirling discs , 2006, astro-ph/0604424.

[102]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[103]  F. Aharonian,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006, astro-ph/0602220.

[104]  R. Narayan,et al.  On the Nature of the Compact Dark Mass at the Galactic Center , 2005, astro-ph/0512211.

[105]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[106]  J. Krolik,et al.  Magnetically Driven Accretion in the Kerr Metric. III. Unbound Outflows , 2004, astro-ph/0407092.

[107]  P. Mazur,et al.  Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[109]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[110]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[111]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[112]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[113]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[114]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[115]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[116]  E. Becklin,et al.  High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy , 1998, astro-ph/9807210.

[117]  Reinhard Genzel,et al.  Stellar proper motions in the central 0.1 PC of the galaxy , 1997 .

[118]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[119]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[120]  H. Ford,et al.  HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[121]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[122]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[123]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[124]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[125]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[126]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[127]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[128]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[129]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[130]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[131]  D. E. Kerr Physics of Fully Ionized Gases. , 1956 .

[132]  L. Spitzer Physics of fully ionized gases , 1956 .

[133]  M. Laue Die allgemeine Relativitätstheorie und Einsteins Lehre von der Schwerkraft , 1921 .