Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells.

[1]  P. Adams Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. , 2007, Gene.

[2]  Jessie C. Jeyapalan,et al.  Accumulation of senescent cells in mitotic tissue of aging primates , 2007, Mechanisms of Ageing and Development.

[3]  M. Lipinski,et al.  Definition of pRB- and p53-Dependent and -Independent Steps in HIRA/ASF1a-Mediated Formation of Senescence-Associated Heterochromatin Foci , 2007, Molecular and Cellular Biology.

[4]  Rugang Zhang,et al.  Molecular Dissection of Formation of Senescence-Associated Heterochromatin Foci , 2007, Molecular and Cellular Biology.

[5]  L. Ramos,et al.  Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation , 2007, Nature Genetics.

[6]  F. Ishikawa,et al.  Loss of linker histone H1 in cellular senescence , 2006, The Journal of cell biology.

[7]  C. Johannessen,et al.  A negative feedback signaling network underlies oncogene-induced senescence. , 2006, Cancer cell.

[8]  Rugang Zhang,et al.  HP1 Proteins Are Essential for a Dynamic Nuclear Response That Rescues the Function of Perturbed Heterochromatin in Primary Human Cells , 2006, Molecular and Cellular Biology.

[9]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[10]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[11]  S. Gruber,et al.  Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway , 2006, Nature Cell Biology.

[12]  K. Ligon,et al.  p16INK4a induces an age-dependent decline in islet regenerative potential , 2006, Nature.

[13]  R. DePinho,et al.  Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a , 2006, Nature.

[14]  S. Morrison,et al.  Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing , 2006, Nature.

[15]  S. Lowe,et al.  A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation , 2006, Cell.

[16]  R. Bernards,et al.  Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence , 2006, Nature Cell Biology.

[17]  F. Bosman,et al.  Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett's esophagus , 2006, Oncogene.

[18]  Shirley Wu,et al.  Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Sedivy,et al.  Cellular Senescence in Aging Primates , 2006, Science.

[20]  J. Pipas,et al.  SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation , 2005, Oncogene.

[21]  B. Loppin,et al.  The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus , 2005, Nature.

[22]  Julie Thomas,et al.  Maize rough sheath2 and Its Arabidopsis Orthologue ASYMMETRIC LEAVES1 Interact with HIRA, a Predicted Histone Chaperone, to Maintain knox Gene Silencing and Determinacy during Organogenesisw⃞ , 2005, The Plant Cell Online.

[23]  H. Stein,et al.  Oncogene-induced senescence as an initial barrier in lymphoma development , 2005, Nature.

[24]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[25]  M. Barbacid,et al.  Tumour biology: Senescence in premalignant tumours , 2005, Nature.

[26]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[27]  H. Clevers,et al.  Wnt signalling in stem cells and cancer , 2005, Nature.

[28]  J. Campisi Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors , 2005, Cell.

[29]  S. Lowe,et al.  The p400 E1A-associated protein is a novel component of the p53 --> p21 senescence pathway. , 2005, Genes & development.

[30]  R. Jope,et al.  Nuclear accumulation of glycogen synthase kinase‐3 during replicative senescence of human fibroblasts , 2004, Aging cell.

[31]  Michel Goedert,et al.  GSK3 inhibitors: development and therapeutic potential , 2004, Nature Reviews Drug Discovery.

[32]  John M Sedivy,et al.  Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). , 2004, Molecular cell.

[33]  Wei Dong Chen,et al.  Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer , 2004, Nature Genetics.

[34]  G. Almouzni,et al.  Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis , 2004, Cell.

[35]  J. Berger,et al.  Structure and Function of the Conserved Core of Histone Deposition Protein Asf1 , 2003, Current Biology.

[36]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[37]  M. Rudnicki,et al.  Wnt Signaling Induces the Myogenic Specification of Resident CD45+ Adult Stem Cells during Muscle Regeneration , 2003, Cell.

[38]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[39]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[40]  I. Weissman,et al.  Wnt proteins are lipid-modified and can act as stem cell growth factors , 2003, Nature.

[41]  R. Maeda,et al.  Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. , 2002, Genes & development.

[42]  P. Lombroso,et al.  Frizzled-9 Is Activated by Wnt-2 and Functions in Wnt/β-Catenin Signaling* , 2002, The Journal of Biological Chemistry.

[43]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[44]  Hartmut Geiger,et al.  The aging of lympho-hematopoietic stem cells , 2002, Nature Immunology.

[45]  Pier Paolo Pandolfi,et al.  The Role of PML in Tumor Suppression , 2002, Cell.

[46]  M. Oren,et al.  Deregulated β‐catenin induces a p53‐ and ARF‐dependent growth arrest and cooperates with Ras in transformation , 2001, The EMBO journal.

[47]  Fred H. Gage,et al.  Cell culture: Progenitor cells from human brain after death , 2001, Nature.

[48]  P. Kaufman,et al.  Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing , 2001, Current Biology.

[49]  J. Shay,et al.  Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. , 2001, Genes & development.

[50]  Ryuji Kobayashi,et al.  The RCAF complex mediates chromatin assembly during DNA replication and repair , 1999, Nature.

[51]  T. Pramila,et al.  Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response , 1999, Oncogene.

[52]  Kathleen E. Rankin,et al.  Regulation of Glycogen Synthase Kinase 3β and Downstream Wnt Signaling by Axin , 1999, Molecular and Cellular Biology.

[53]  D. Gottschling,et al.  Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. , 1998, Genetics.

[54]  C. S. Young,et al.  Wnt-1 Induces Growth, Cytosolic β-Catenin, and Tcf/Lef Transcriptional Activation in Rat-1 Fibroblasts , 1998, Molecular and Cellular Biology.

[55]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[56]  A. Harris,et al.  Compartment switching of WNT-2 expression in human breast tumors. , 1996, Cancer research.

[57]  C. Gespach,et al.  Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. , 1996, Oncogene.

[58]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  O. Yoshida,et al.  RECENT ADVANCES IN THE MOLECULAR GENETICS OF UROGENITAL TUMORS , 1994, International journal of urology : official journal of the Japanese Urological Association.

[60]  M. Osley,et al.  Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[61]  P. Roach,et al.  Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. , 1987, The Journal of biological chemistry.

[62]  Frédérick A. Mallette,et al.  oncogene-induced senescence The DNA damage signaling pathway is a critical mediator of , 2007 .

[63]  Ronen Marmorstein,et al.  Structure of a human ASF1a–HIRA complex and insights into specificity of histone chaperone complex assembly , 2006, Nature Structural &Molecular Biology.

[64]  Adrian A Canutescu,et al.  Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. , 2005, Developmental cell.

[65]  P. Lombroso,et al.  Frizzled-9 is activated by Wnt-2 and functions in Wnt/beta -catenin signaling. , 2002, The Journal of biological chemistry.