A quantitative finite-dimensional krivine theorem
暂无分享,去创建一个
[1] J. Krivine,et al. Sous-espaces de dimension finie des espaces de Banach reticules , 1976 .
[2] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[3] D. R. Lewis. Finite dimensional subspaces of $L_{p}$ , 1978 .
[4] V. Milman,et al. Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .
[5] G. Schechtman. Lévy type inequality for a class of finite metric spaces , 1982 .
[6] Gilles Pisier,et al. On the Dimension of the l n p -Subspaces of Banach Spaces, for 1 p < 2 , 1983 .
[7] N. Alon,et al. Embedding ofl∞k in finite dimensional Banach spaces , 1983 .
[8] M. Gromov,et al. A topological application of the isoperimetric inequality , 1983 .
[9] Gilles Pisier,et al. On the dimension of the ⁿ_{}-subspaces of Banach spaces, for 1≤<2 , 1983 .