The Nagaev-Guivarc'h method via the Keller-Liverani theorem

La methode de Nagaev-Guivarc'h, via le theoreme de perturbation de Keller et Liverani, a ete appliquee recemment en vu d'etablir des theoremes limites pour des fonctionnelles non bornees de chaines de Markov fortement ergodiques. La difficulte principale dans cette approche est de demontrer des developpements de Taylor pour la valeur propre perturbee de l'operateur de Fourier. Dans ce travail, nous donnons une presentation generale de cette methode, et nous l'etendons en demontrant un theoreme limite local multidimensionnel, un theoreme de Berry-Esseen unidimensionnel, un developpement d'Edgeworth d'ordre 1, et enfin un theoreme de Berry-Esseen multidimensionnel au sens de la distance de Prohorov. Nos applications concernent les chaines de Markov L 2 -fortement ergodiques, υ-geometriquement ergodiques, et les modeles iteratifs. Pour ces exemples, les trois premiers theoremes limites cites precedemment sont satisfaits sous des conditions de moment dont l'ordre est le meme (parfois a e > 0 pres) que dans le cas independant.

[1]  Hubert Hennion,et al.  Central limit theorems for iterated random Lipschitz mappings , 2004 .

[2]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[3]  R. Durrett Probability: Theory and Examples , 1993 .

[4]  Carlangelo Liverani,et al.  Invariant measures and their properties. A functional analytic point of view , 2004 .

[5]  C. Ionescu,et al.  THEORIE ERGODIQUE POUR DES CLASSES D'OPERATIONS NON COMPLETEMENT CONTINUES , 1950 .

[6]  Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques , 2008, 0805.3418.

[7]  Sebastien Gouezel,et al.  Central limit theorem and stable laws for intermittent maps , 2002, math/0211117.

[8]  On the first-order Edgeworth expansion for a Markov chain , 1993 .

[9]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[10]  F. Räbiger,et al.  On the approximation of positive operators and the behaviour of the spectra of the approximants , 1997 .

[11]  M. Gharib A uniform estimate for the rate of convergence in the multidimensional central limit theorem for homogeneous Markov chains , 1996 .

[12]  Stable Laws and Products of Positive Random Matrices , 2008, 0801.3780.

[13]  L. Hervé,et al.  Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness , 2001 .

[14]  Y. L. Jan,et al.  Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions , 1993 .

[15]  Anne Broise,et al.  Études spectrales d'opérateurs de transfert et applications , 1996 .

[16]  Carlangelo Liverani,et al.  Banach spaces adapted to Anosov systems , 2005, Ergodic Theory and Dynamical Systems.

[17]  Necessary and Sufficient Conditions for Limit Theorems in Gibbs-markov Maps , .

[18]  M. Séva On the local limit theorem for non-uniformly ergodic Markov chains , 1995, Journal of Applied Probability.

[19]  F. Smithies Linear Operators , 2019, Nature.

[20]  Diffusion approximation of a Knudsen gas model: dependence of the diffusion constant upon the boundary condition , 2002 .

[21]  A Local Limit Theorem for Stationary Processes in the Domain of Attraction of a Normal Distribution , 2001 .

[22]  Xia Chen,et al.  Limit Theorems for Functionals of Ergodic Markov Chains With General State Space , 1999 .

[23]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[24]  Erwin Bolthausen,et al.  The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains , 1982 .

[25]  A. Raugi,et al.  Étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif : convergence, normalité asymptotique, vitesse de convergence , 1989 .

[26]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[27]  E. L. Page Théorèmes de renouvellement pour les produits de matrices aléatoires Équations aux différences aléatoires , 1983 .

[28]  Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications , 1989 .

[29]  APPLICATION TO THE KNUDSEN GAS AND TO THE SINAI BILLIARD , 2006 .

[30]  Hajo Holzmann,et al.  Some remarks on the central limit theorem for stationary Markov processes , 2004 .

[31]  Iterated Function Systems and Spectral Decomposition of the Associated Markov Operator , 1993 .

[32]  E. Rio,et al.  Rates of convergence for minimal distances in the central limit theorem under projective criteria , 2007, 0712.0179.

[33]  A. A. Jurinskii A Smoothing Inequality for Estimates of the Lévy–Prokhorov Distance , 1975 .

[34]  Emmanuel Rio,et al.  On mean central limit theorems for stationary sequences , 2008 .

[35]  Anne Broise,et al.  Transformations dilatantes de l'intervalle [0,1] et théorèmes limites , 1992 .

[36]  Jon Aaronson,et al.  LOCAL LIMIT THEOREMS FOR PARTIAL SUMS OF STATIONARY SEQUENCES GENERATED BY GIBBS–MARKOV MAPS , 2001 .

[37]  G. Alsmeyer On the Harris Recurrence of Iterated Random Lipschitz Functions and Related Convergence Rate Results , 2003 .

[38]  M. Benda A central limit theorem for contractive stochastic dynamical systems , 1998 .

[39]  V. K. Malinovskii,et al.  Limit Theorems for Harris Markov Chains, I , 1987 .

[40]  Jacques Rousseau-Egele,et al.  Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux , 1983 .

[41]  Cheng-Der Fuh,et al.  Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks , 2001, Advances in Applied Probability.

[42]  M. Babillot,et al.  Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps , 2006 .

[43]  Y. Guivarc'h,et al.  On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks , 2008, Ergodic Theory and Dynamical Systems.

[44]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[45]  Denis Guibourg Théorème de renouvellement pour chaînes de Markov fortement ergodiques : application aux modèles itératifs lipschitziens , 2008 .

[46]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[47]  S. V. Nagaev Some Limit Theorems for Stationary Markov Chains , 1957 .

[48]  Stéphan Clémençon,et al.  Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains , 2004 .

[49]  S. Meyn,et al.  Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.

[50]  Hubert Hennion Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs , 1991 .

[51]  Emile Le Page,et al.  Théorèmes limites pour les produits de matrices aléatoires , 1982 .

[52]  J. L. Jensen Asymptotic exapnsions for strongly mixing Harris recurrent Markov chains , 1989 .

[53]  Spectral gap of positive operators and applications , 2000 .

[54]  H. Hennion Quasi-compactness and absolutely continuous kernels , 2007 .

[55]  On almost-sure versions of classical limit theorems for dynamical systems , 2006, math/0601388.

[56]  Yues Guivarc'h Application d'un theoreme limite local a la transience et a la recurrence de marches de Markov , 1984 .

[57]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[58]  Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V-géométriquement ergodiques et aux modèles itératifs , 2005 .

[59]  Hubert Hennion,et al.  Sur un théorème spectral et son application aux noyaux lipchitziens , 1993 .

[60]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[61]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[62]  Liming Wu,et al.  Essential spectral radius for Markov semigroups (I): discrete time case , 2004 .

[63]  A Renewal Theorem for Strongly Ergodic Markov Chains in Dimension d ≥ 3 and Centered Case , 2010, 1009.5916.

[64]  Friedrich Götze,et al.  Asymptotic expansions for sums of weakly dependent random vectors , 1983 .

[65]  Gerhard Keller,et al.  Stability of the spectrum for transfer operators , 1999 .

[66]  Y. Guivarc’h,et al.  Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov , 1988 .

[67]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[68]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[69]  Limit Theorems in the Stadium Billiard , 2005, math/0502453.