Russian and American put options under exponential phase-type Lévy models

[1]  B. Harris The Passage Problem for a Stationary Markov Chain , 1962 .

[2]  B. Mandelbrot New Methods in Statistical Economics , 1963, Journal of Political Economy.

[3]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[4]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[5]  E. Fama Portfolio Analysis in a Stable Paretian Market , 1965 .

[6]  A. G. Fakeev Optimal Stopping of a Markov Process , 1971 .

[7]  T. Liggett,et al.  Optimal Stopping for Partial Sums , 1972 .

[8]  N. H. Bingham,et al.  Fluctuation theory in continuous time , 1975, Advances in Applied Probability.

[9]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[10]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[11]  Sheldon M. Ross,et al.  Approximating Transition Probabilities and Mean Occupation Times in Continuous-Time Markov Chains , 1987, Probability in the Engineering and Informational Sciences.

[12]  S. Asmussen Exponential families generated by phase-type distributions and other Markov lifetimes , 1989 .

[13]  Søren Asmussen,et al.  Phase-Type Representations in Random Walk and Queueing Problems , 1992 .

[14]  Larry A Shepp,et al.  The Russian Option: Reduced Regret , 1993 .

[15]  J. Michael Harrison,et al.  Arbitrage Pricing of Russian Options and Perpetual Lookback Options , 1993 .

[16]  Peter Carr,et al.  Fast Accurate Valuation of American Options , 1994 .

[17]  A. Shiryaev,et al.  Toward the theory of pricing of options of both European and American types. II: Continuous time , 1995 .

[18]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Larry A Shepp,et al.  A New Look at Pricing of the ”Russian Option“ , 1995 .

[20]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[21]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[22]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[23]  P. Carr Randomization and the American Put , 1996 .

[24]  Didier Sornette,et al.  Scale Invariance and Beyond , 1997 .

[25]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[26]  J. Bouchaud,et al.  Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.

[27]  G. P. Eskir On the Russian Option: The Expected Waiting Time , 1997 .

[28]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[29]  T. Chan Pricing contingent claims on stocks driven by Lévy processes , 1999 .

[30]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[31]  A. Shiryaev,et al.  Sequential testing problems for Poisson processes , 2000 .

[32]  Offer Kella,et al.  A multi-dimensional martingale for Markov additive processes and its applications , 2000, Advances in Applied Probability.

[33]  The Russian Options , 2000 .

[34]  Søren Asmussen,et al.  Matrix‐analytic Models and their Analysis , 2000 .

[35]  Russian Options for a Diffusion with Negative Jumps , 2001 .

[36]  Xin Guo An explicit solution to an optimal stopping problem with regime switching , 2001, Journal of Applied Probability.

[37]  M. Yor,et al.  ASSET PRICES ARE BROWNIAN MOTION: ONLY IN BUSINESS TIME , 2001 .

[38]  T. Chan,et al.  On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr's approximation for American puts , 2002 .

[39]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[40]  Ernesto Mordecki,et al.  Optimal stopping and perpetual options for Lévy processes , 2002, Finance Stochastics.

[41]  Florin Avram,et al.  Erlangian Approximations for Finite-Horizon Ruin Probabilities , 2002, ASTIN Bulletin.

[42]  Steffen L. Lauritzen,et al.  The estimation of phase-type related functionals using Markov chain Monte Carlo methods , 2003 .

[43]  A. Kyprianou,et al.  Perpetual options and Canadization through fluctuation theory , 2003 .

[44]  Ernesto Mordecki,et al.  Ruin Probabilities for Levy Processes with Mixed-Exponential Negative Jumps , 2004 .

[45]  Florin Avram,et al.  Exit problems for spectrally negative Levy processes and applications to (Canadized) Russian options , 2004 .