The BrunnMinkowski theorem and related geometric and functional inequalities

The Brunn�Minkowski inequality gives a lower bound of the Lebesgue measure of a sum-set in terms of the measures of the individual sets. It has played a crucial role in the theory of convex bodies. This topic has many interactions with isoperimetry or functional analysis. Our aim here is to report some recent aspects of these interactions involving optimal mass transport or the Heat equation. Among other things, we will present Brunn�Minkowski inequalities for flat sets, or in Gauss space, as well as local versions of the theorem which apply to the study of entropy production in the central limit theorem.

[1]  R. McCann A convexity theory for interacting gases and equilibrium crystals , 1994 .

[2]  A. Ehrhard Symétrisation dans l'espace de Gauss. , 1983 .

[3]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[4]  E. Lieb Gaussian kernels have only Gaussian maximizers , 1990 .

[5]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[6]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[7]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[8]  S. Gupta,et al.  Brunn-Minkowski inequality and its aftermath , 1980 .

[9]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[10]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[11]  Franck Barthe RESTRICTED PREKOPA-LEINDLER INEQUALITY , 1999 .

[12]  Elliott H. Lieb,et al.  An Inequality of Hadamard Type for Permanents , 2005 .

[13]  Gilles Hargé A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces , 2004 .

[14]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[15]  B. Maurey,et al.  The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems , 2004 .

[16]  Assaf Naor,et al.  On the rate of convergence in the entropic central limit theorem , 2004 .

[17]  Small ball probability estimates in terms of widths Studia Math , 2005, math/0501268.

[18]  F. Barthe,et al.  Inverse Brascamp-Lieb Inequalities along the Heat Equation , 2004 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  Stanislaw J. Szarek,et al.  Shannon’s entropy power inequality via restricted minkowski sums , 2000 .

[21]  T. Tao,et al.  Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities , 2005, math/0505691.

[22]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[23]  B. Bollobás THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .

[24]  T. Tao,et al.  The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals , 2005, math/0505065.

[25]  F. Barthe,et al.  Entropy of spherical marginals and related inequalities , 2006 .

[26]  E. Lieb,et al.  A sharp analog of Young’s inequality on SN and related entropy inequalities , 2004, math/0408030.

[27]  M. Ledoux The concentration of measure phenomenon , 2001 .

[28]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[29]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[30]  Assaf Naor,et al.  Entropy jumps in the presence of a spectral gap , 2003 .

[31]  S. Szarek,et al.  Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality , 1995, math/9510203.

[32]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[33]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[34]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[35]  K. Ball,et al.  Solution of Shannon's problem on the monotonicity of entropy , 2004 .

[36]  J. Linnik An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .

[37]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[38]  F. Barthe On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.

[39]  C. Borell,et al.  Diffusion Equations and Geometric Inequalities , 2000 .

[40]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[41]  Luis A. Caffarelli,et al.  Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .

[42]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[43]  R. Latala A note on the Ehrhard inequality , 1996 .

[44]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[45]  C. Villani Topics in Optimal Transportation , 2003 .

[46]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[47]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[48]  Krzysztof Oleszkiewicz,et al.  Gaussian measures of dilatations of convex symmetric sets , 1999 .

[49]  M. Ledoux The geometry of Markov diffusion generators , 1998 .

[50]  K. Ball Chapter 4 – Convex Geometry and Functional Analysis , 2001 .

[51]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[52]  Ralph Henstock,et al.  On the Measure of Sum‐Sets. (I) The Theorems of Brunn, Minkowski, and Lusternik , 1953 .

[53]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[54]  C. Borell,et al.  The Ehrhard inequality , 2003 .