The BrunnMinkowski theorem and related geometric and functional inequalities
暂无分享,去创建一个
[1] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[2] A. Ehrhard. Symétrisation dans l'espace de Gauss. , 1983 .
[3] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[4] E. Lieb. Gaussian kernels have only Gaussian maximizers , 1990 .
[5] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[6] Dario Cordero-Erausquin,et al. Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .
[7] A. Barron,et al. Fisher information inequalities and the central limit theorem , 2001, math/0111020.
[8] S. Gupta,et al. Brunn-Minkowski inequality and its aftermath , 1980 .
[9] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[10] C. Villani,et al. A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .
[11] Franck Barthe. RESTRICTED PREKOPA-LEINDLER INEQUALITY , 1999 .
[12] Elliott H. Lieb,et al. An Inequality of Hadamard Type for Permanents , 2005 .
[13] Gilles Hargé. A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces , 2004 .
[14] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[15] B. Maurey,et al. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems , 2004 .
[16] Assaf Naor,et al. On the rate of convergence in the entropic central limit theorem , 2004 .
[17] Small ball probability estimates in terms of widths Studia Math , 2005, math/0501268.
[18] F. Barthe,et al. Inverse Brascamp-Lieb Inequalities along the Heat Equation , 2004 .
[19] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[20] Stanislaw J. Szarek,et al. Shannon’s entropy power inequality via restricted minkowski sums , 2000 .
[21] T. Tao,et al. Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities , 2005, math/0505691.
[22] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[23] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[24] T. Tao,et al. The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals , 2005, math/0505065.
[25] F. Barthe,et al. Entropy of spherical marginals and related inequalities , 2006 .
[26] E. Lieb,et al. A sharp analog of Young’s inequality on SN and related entropy inequalities , 2004, math/0408030.
[27] M. Ledoux. The concentration of measure phenomenon , 2001 .
[28] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[29] E. Carlen,et al. Entropy production by block variable summation and central limit theorems , 1991 .
[30] Assaf Naor,et al. Entropy jumps in the presence of a spectral gap , 2003 .
[31] S. Szarek,et al. Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality , 1995, math/9510203.
[32] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[33] A. Barron. ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .
[34] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[35] K. Ball,et al. Solution of Shannon's problem on the monotonicity of entropy , 2004 .
[36] J. Linnik. An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .
[37] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[38] F. Barthe. On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.
[39] C. Borell,et al. Diffusion Equations and Geometric Inequalities , 2000 .
[40] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[41] Luis A. Caffarelli,et al. Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .
[42] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[43] R. Latala. A note on the Ehrhard inequality , 1996 .
[44] E. Lieb,et al. Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .
[45] C. Villani. Topics in Optimal Transportation , 2003 .
[46] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[47] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[48] Krzysztof Oleszkiewicz,et al. Gaussian measures of dilatations of convex symmetric sets , 1999 .
[49] M. Ledoux. The geometry of Markov diffusion generators , 1998 .
[50] K. Ball. Chapter 4 – Convex Geometry and Functional Analysis , 2001 .
[51] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[52] Ralph Henstock,et al. On the Measure of Sum‐Sets. (I) The Theorems of Brunn, Minkowski, and Lusternik , 1953 .
[53] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[54] C. Borell,et al. The Ehrhard inequality , 2003 .