From neural networks to the brain: autonomous mental development

Artificial neural networks can model cortical local learning and signal processing, but they are not the brain, neither are many special purpose systems to which they contribute. Autonomous mental development models all or part of the brain (or the central nervous system) and how it develops and learns autonomously from infancy to adulthood. Like neural network research, such modeling aims to be biologically plausible. This paper discusses why autonomous development is necessary according to a concept called task muddiness. Then it introduces results for a series of research issues, including the new paradigm for autonomous development, mental architectures, developmental algorithm, a refined classification of types of machine learning, spatial complexity and time complexity. Finally, the paper presents some experimental results for applications, including: vision-guided navigation, object finding, object-based attention (eye-pan), and attention-guided pre-reaching, tour tasks that infants learn to perform early but very perceptually challenging for robots

[1]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[3]  Xiaoqin Wang,et al.  Remodelling of hand representation in adult cortex determined by timing of tactile stimulation , 1995, Nature.

[4]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[5]  Juyang Weng,et al.  State-based SHOSLIF for indoor visual navigation , 2000, IEEE Trans. Neural Networks Learn. Syst..

[6]  Juyang Weng,et al.  A theory for mentally developing robots , 2002, Proceedings 2nd International Conference on Development and Learning. ICDL 2002.

[7]  Juyang Weng,et al.  Hierarchical Discriminant Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  James L. McClelland,et al.  Autonomous Mental Development by Robots and Animals , 2001, Science.

[9]  Narendra Ahuja,et al.  Learning Recognition and Segmentation Using the Cresceptron , 1997, International Journal of Computer Vision.

[10]  Juyang Weng,et al.  Dav: a humanoid robot platform for autonomous mental development , 2002, Proceedings 2nd International Conference on Development and Learning. ICDL 2002.

[11]  J. Weng A Theory of Developmental Architecture , 2004 .

[12]  Risto Mukkulainen,et al.  Script Recognition with Hierarchical Feature Maps , 1990 .

[13]  Sebastian Thrun,et al.  Explanation-based neural network learning a lifelong learning approach , 1995 .

[14]  Olaf Sporns,et al.  Multilevel analysis of classical conditioning in a behaving real world artifact , 1995, Robotics Auton. Syst..

[15]  Lawrence Birnbaum,et al.  Looking for trouble: Using causal semantics to direct focus of attention , 1993, 1993 (4th) International Conference on Computer Vision.

[16]  G. Edelman,et al.  Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. , 1998, Cerebral cortex.

[17]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[18]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[19]  David S. Touretzky,et al.  Operant Conditioning in Skinnerbots , 1997, Adapt. Behav..

[20]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[21]  Juyang Weng,et al.  Action chaining by a developmental robot with a value system , 2002, Proceedings 2nd International Conference on Development and Learning. ICDL 2002.

[22]  Xiao Huang,et al.  Novelty and Reinforcement Learning in the Value System of Developmental Robots , 2002 .

[23]  Michael Cole,et al.  THE DEVELOPMENT OF CHILDREN. , 1925, Science.

[24]  John R. Anderson,et al.  Rules of the Mind , 1993 .

[25]  Reid G. Simmons,et al.  Unsupervised learning of probabilistic models for robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  Juyang Weng,et al.  Developmental Robots: Theory, Method and Experimental Results , 1999 .

[27]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[28]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[29]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[30]  Juyang Weng,et al.  Muddy Tasks and the Necessity of Autonomous Mental Development , 2005 .

[31]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[32]  H. Gardner Multiple intelligences : the theory in practice , 1993 .

[33]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[34]  Juyang Weng,et al.  A Theory of Developmental Mental Architecture and the Dav Architecture Design , 2005, Int. J. Humanoid Robotics.

[35]  Juyang Weng,et al.  Autonomous Mental Development: Workshop on Development and Learning (WDL) , 2002, AI Mag..

[36]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[37]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[38]  Juyang Weng,et al.  On developmental mental architectures , 2007, Neurocomputing.

[39]  Risto Miikkulainen,et al.  Script Recognition with Hierarchical Feature Maps , 1992 .

[40]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[41]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[42]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[43]  Juyang Weng,et al.  Developmental Robotics: Theory and Experiments , 2004, Int. J. Humanoid Robotics.

[44]  Juyang Weng,et al.  Online image classification using IHDR , 2003, International Journal on Document Analysis and Recognition.

[45]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[46]  M. Bichsel Strategies of robust object recognition for the automatic identification of human faces , 1991 .

[47]  Juyang Weng,et al.  Value system development for a robot , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[48]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[49]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[50]  Michael Hucka,et al.  Robo-Soar: An integration of external interaction, planning, and learning using Soar , 1991, Robotics Auton. Syst..

[51]  Juyang Weng,et al.  Developmental Humanoids: Humanoids that Develop Skills Automatically , 2000 .

[52]  Juyang Weng,et al.  Vision-guided navigation using SHOSLIF , 1998, Neural Networks.