Extreme downsizing in the surfactant-free synthesis of spin-crossover nanoparticles in a microfluidic flow-focusing junction.

A new surfactant-free, flow-focusing droplet microfluidic approach was developed as an important alternative to existing synthesis techniques for the preparation of spin crossover nanoparticles. It enables great control of the mixing of the reactants, and produces crystals of [Fe(pyrazine)(Pt(CN)4)] with an unexpected 20-fold downsizing compared to classical bulk synthesis.

[1]  C. Abell,et al.  Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles , 2018, Scientific Reports.

[2]  Birgit Weber Synthesis of Coordination Polymer Nanoparticles using Self-Assembled Block Copolymers as Template. , 2017, Chemistry.

[3]  R. Dittmeyer,et al.  Continuous microfluidic synthesis of colloidal ultrasmall gold nanoparticles: in situ study of the early reaction stages and application for catalysis , 2017 .

[4]  M. Ruben,et al.  Emerging trends in spin crossover (SCO) based functional materials and devices , 2017 .

[5]  Yanhui Zhao,et al.  Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials. , 2016, Nano today.

[6]  T. S. Mayor,et al.  Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients , 2016, Advanced materials.

[7]  Kateryna O. Znovjyak,et al.  Strong Cooperative Spin Crossover in 2D and 3D FeII-MI,II Hofmann-Like Coordination Polymers Based on 2-Fluoropyrazine. , 2016, Inorganic chemistry.

[8]  J. Let́ard,et al.  Rational Control of Spin-Crossover Particle Sizes: From Nano- to Micro-Rods of [Fe(Htrz)2(trz)](BF4) , 2016 .

[9]  G. Molnár,et al.  Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects , 2016 .

[10]  L. Kong,et al.  Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip , 2015 .

[11]  W. Nicolazzi,et al.  Re-appearance of cooperativity in ultra-small spin-crossover [Fe(pz){Ni(CN)₄}] nanoparticles. , 2014, Angewandte Chemie.

[12]  Josep Puigmartí-Luis,et al.  Microfluidic platforms: a mainstream technology for the preparation of crystals. , 2014, Chemical Society reviews.

[13]  A. Zewail,et al.  Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. , 2013, Nature chemistry.

[14]  Azzedine Bousseksou,et al.  Spin Crossover at the Nanometre Scale , 2013 .

[15]  L. G. Lavrenova,et al.  Spin Crossover and Thermochromism of Iron(II) Coordination Compounds with 1,2,4‐Triazoles and Tris(pyrazol‐1‐yl)methanes , 2013 .

[16]  M. Halcrow Spin-crossover materials : properties and applications , 2013 .

[17]  M. Ruben,et al.  Nanoparticles, Thin Films and Surface Patterns from Spin‐Crossover Materials and Electrical Spin State Control , 2013 .

[18]  O. Roubeau Triazole-based one-dimensional spin-crossover coordination polymers. , 2012, Chemistry.

[19]  S. Kuhn,et al.  Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Bousseksou,et al.  Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. , 2011, Chemical communications.

[21]  J. Real,et al.  Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers , 2011 .

[22]  Azzedine Bousseksou,et al.  Molecular spin crossover phenomenon: recent achievements and prospects. , 2011, Chemical Society reviews.

[23]  P. Dittrich,et al.  Coordination polymer nanofibers generated by microfluidic synthesis. , 2011, Journal of the American Chemical Society.

[24]  O. Roubeau,et al.  Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials , 2011 .

[25]  P. Gütlich,et al.  Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers , 2010 .

[26]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[27]  K. Jensen,et al.  Synthesis of micro and nanostructures in microfluidic systems. , 2010, Chemical Society reviews.

[28]  D. Denux,et al.  Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties. , 2009, Chemistry.

[29]  Andrew D Griffiths,et al.  Microfluidic production of droplet pairs. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  Andrew D Griffiths,et al.  Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. , 2008, Angewandte Chemie.

[31]  Jean-François Létard,et al.  Nanoparticles of iron(II) spin-crossover. , 2008, Chemical communications.

[32]  Philipp Gütlich,et al.  Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. , 2008, Angewandte Chemie.

[33]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[34]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[35]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .