Fluorescent probe: complexation of Fe3+ with the myo-inositol 1,2,3-trisphosphate motif.

Natural myo-inositol phosphate antioxidants containing the 1,2,3-trisphosphate motif bind Fe(3+) in the unstable penta-axial conformation.

[1]  C. Bunce,et al.  Inositol 1,2,3-trisphosphate and inositol 1,2- and/or 2,3-bisphosphate are normal constituents of mammalian cells. , 1995, The Biochemical journal.

[2]  P. Hughes,et al.  Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. , 2004, The Biochemical journal.

[3]  Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair. , 2008, Organic & biomolecular chemistry.

[4]  E. Graf,et al.  Antioxidant functions of inositol 1,2,3-trisphosphate and inositol 1,2,3,6-tetrakisphosphate. , 1997, Free radical biology & medicine.

[5]  D. Mansell,et al.  “Chelatable iron pool”: inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand , 2008, JBIC Journal of Biological Inorganic Chemistry.

[6]  M. Delville,et al.  Metal-Induced Self-Assembly of a Pyrene-Tethered Hydroxamate Ligand for the Generation of Multichromophoric Supramolecular Systems. The Pyrene Excimer as Switch for Iron(III)-Driven Intramolecular Fluorescence Quenching , 1998 .

[7]  D. Poyner,et al.  The first synthesis and iron binding studies of the natural product, myo-inositol 1,2,3-trisphosphate , 1995 .

[8]  J. S. Sohna,et al.  Photoactive pyrene-containing receptors for transition-metal ions , 2001 .

[9]  T. Weil,et al.  Fluorescent, Siderophore-Based Chelators. Design and Synthesis of a Trispyrenyl Trishydroxamate Ligand, an Intramolecular Excimer-Forming Sensing Molecule Which Responds to Iron(III) and Gallium(III) Metal Cations. , 1996, The Journal of organic chemistry.

[10]  A. D'emanuele,et al.  Locked energy of axial to equatorial transformation monitored by exciplex and excimer fluorescence , 2006 .

[11]  K. Wakabayashi,et al.  Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. , 2002, Bioorganic & medicinal chemistry.

[12]  Y. Chang,et al.  Synthesis and iron binding studies of myo-inositol 1,2,3-trisphosphate and (+/-)-myo-inositol 1,2-bisphosphate, and iron binding studies of all myo-inositol tetrakisphosphates. , 1996, Carbohydrate research.

[13]  S. Freeman,et al.  Crystal structure and modelling studies of myo-inositol 1,2,3-trisphosphate , 1995 .

[14]  B. Borgias,et al.  STRUCTURAL CHEMISTRY OF GALLIUM(II1). CRYSTAL STRUCTURES OF K3 [Ga(catecholate)3)]·1.5H2O AND [Ga(benzohydroxamate)3]·H2O·CH3 CH2OH , 1986 .

[15]  R. Kahn,et al.  Crystal structure of cyclohexane I and II , 1973 .

[16]  A. Holmes,et al.  Synthesis and conformational analysis of novel polymeric ligands based on myo-inositol , 2006 .

[17]  G. Obal,et al.  Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. , 2005, Journal of inorganic biochemistry.

[18]  M. Schell,et al.  Do mammals make all their own inositol hexakisphosphate? , 2008, The Biochemical journal.