Maximum likelihood estimation for small noise multiscale diffusions

We study the problem of parameter estimation for stochastic differential equations with small noise and fast oscillating parameters. Depending on how fast the intensity of the noise goes to zero relative to the homogenization parameter, we consider three different regimes. For each regime, we construct the maximum likelihood estimator and we study its consistency and asymptotic normality properties. A simulation study for the first order Langevin equation with a two scale potential is also provided.

[1]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[2]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[3]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[4]  R. Zwanzig,et al.  Diffusion in a rough potential. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Prakasa Rao Statistical inference for diffusion type processes , 1999 .

[6]  Richard B. Sowers,et al.  A comparison of homogenization and large deviations, with applications to wavefront propagation , 1999 .

[7]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[8]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[9]  Y. Kutoyants Statistical Inference for Ergodic Diffusion Processes , 2004 .

[10]  G. A. Pavliotis,et al.  Parameter Estimation for Multiscale Diffusions , 2007 .

[11]  Jaya P. N. Bishwal,et al.  Parameter estimation in stochastic differential equations , 2007 .

[12]  G. A. Pavliotis,et al.  Maximum likelihood drift estimation for multiscale diffusions , 2008, 0806.3248.

[13]  Wolfhard Janke,et al.  Rugged Free Energy Landscapes , 2008 .

[14]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[15]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Jin Feng,et al.  Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model , 2010, SIAM J. Financial Math..

[17]  Robert Azencott,et al.  Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions , 2010 .

[18]  Luigi Preziosi,et al.  Cell Mechanics. From single scale-based models to multiscale modeling , 2010 .

[19]  A. Papavasiliou Coarse-Grained Modeling of Multiscale Diffusions: The p -Variation Estimates , 2010, 1002.3241.

[20]  Konstantinos Spiliopoulos,et al.  Rare event simulation for rough energy landscapes , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[21]  Konstantinos Spiliopoulos,et al.  Large deviations for multiscale diffusion via weak convergence methods , 2010, 1011.5933.

[22]  Jean-Pierre Fouque,et al.  SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS , 2010, 1009.2782.

[23]  Konstantinos Spiliopoulos,et al.  Importance Sampling for Multiscale Diffusions , 2011, Multiscale Model. Simul..

[24]  Robert Azencott,et al.  SUB-SAMPLING AND PARAMETRIC ESTIMATION FOR MULTISCALE DYNAMICS ∗ , 2013 .

[25]  Grigorios A. Pavliotis,et al.  Semiparametric Drift and Diffusion Estimation for Multiscale Diffusions , 2013, Multiscale Model. Simul..

[26]  Benedikt Wirth,et al.  Fast Automated Detection of Crystal Distortion and Crystal Defects in Polycrystal Images , 2014, Multiscale Model. Simul..