Impurity spin textures across conventional and deconfined quantum critical points of two-dimensional antiferromagnets

We describe the spin distribution in the vicinity of a nonmagnetic impurity in a two-dimensional antiferromagnet undergoing a transition from a magnetically ordered N\'eel state to a paramagnet with a spin gap. The quantum critical ground state in a finite system has total spin $S=1∕2$ (if the system without the impurity had an even number of $S=1∕2$ spins), and recent numerical studies in a double layer antiferromagnet [K. H. H\"oglund et al., Phys. Rev. Lett. 98, 087203 (2007)] have shown that the spin has a universal spatial form delocalized across the entire sample. We present the field theory describing the uniform and staggered magnetizations in this spin texture for two classes of antiferromagnets: (i) the transition from a N\'eel state to a paramagnet with local spin singlets, in models with an even number of $S=1∕2$ spins per unit cell, which are described by a O(3) Landau-Ginzburg-Wilson field theory; and (ii) the transition from a N\'eel state to a valence bond solid, in antiferromagnets with a single $S=1∕2$ spin per unit cell, which are described by a ``deconfined'' field theory of spinons.

[1]  Michael Levin,et al.  Hole dynamics in an antiferromagnet across a deconfined quantum critical point , 2007, cond-mat/0702119.

[2]  A. Sandvik,et al.  Impurity induced spin texture in quantum critical 2D antiferromagnets. , 2006, Physical Review Letters.

[3]  A. Sandvik Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. , 2006, Physical review letters.

[4]  A. Syromyatnikov,et al.  Frustrated impurity spins in ordered two-dimensional quantum antiferromagnets , 2006, cond-mat/0610506.

[5]  A. Kolezhuk,et al.  Theory of quantum impurities in spin liquids , 2006, cond-mat/0606385.

[6]  S. Eggert,et al.  Doping effects in low dimensional antiferromagnets , 2006, cond-mat/0604001.

[7]  S. Eggert,et al.  Knight shifts around vacancies in the 2D Heisenberg model. , 2005, Physical review letters.

[8]  A. Sandvik,et al.  High-precision finite-size scaling analysis of the quantum-critical point of S=1/2 Heisenberg antiferromagnetic bilayers , 2005, cond-mat/0509747.

[9]  H. Alloul,et al.  Impurity-induced local magnetism and density of states in the superconducting state of YBa2Cu3O7. , 2005, Physical review letters.

[10]  O. Sushkov,et al.  Long-range dynamics of magnetic impurities coupled to a two-dimensional Heisenberg antiferromagnet , 2004, cond-mat/0408598.

[11]  M. Fisher,et al.  Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm , 2003, cond-mat/0312617.

[12]  M. Fisher,et al.  Deconfined Quantum Critical Points , 2003, Science.

[13]  A. Vishwanath,et al.  Emergent photons and transitions in the O(3) sigma model with hedgehog suppression , 2003, cond-mat/0311222.

[14]  M. Vojta,et al.  Quantum impurity in an antiferromagnet: Nonlinear sigma model theory , 2003, cond-mat/0303001.

[15]  A. Sandvik,et al.  Susceptibility of the 2D spin-1 / 2 Heisenberg antiferromagnet with an impurity. , 2003, Physical review letters.

[16]  P. Gehring,et al.  Quantum Impurities in the Two-Dimensional Spin One-Half Heisenberg Antiferromagnet , 2002, Science.

[17]  M. Troyer Static and Dynamic Holes in a Quantum Critical Antiferromagnet , 2002 .

[18]  Y. C. Chen,et al.  Diluted quantum antiferromagnets: Spin excitations and long-range order , 2001, cond-mat/0107488.

[19]  H. Takayama,et al.  Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice , 2001, cond-mat/0107115.

[20]  H. Eisaki,et al.  Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ , 2001, Nature.

[21]  H. Alloul,et al.  Persistence of Li induced Kondo moments in the superconducting state of cuprates. , 2000, Physical review letters.

[22]  O. Sushkov Spin-12 magnetic impurity in a two-dimensional magnetic system close to a quantum critical point , 2000, cond-mat/0004057.

[23]  C. Buragohain,et al.  Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors , 1999, cond-mat/9912020.

[24]  H. Eisaki,et al.  Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ , 1999, Nature.

[25]  Sachdev,et al.  Quantum impurity in a nearly critical two-dimensional antiferromagnet , 1999, Science.

[26]  K. Manabe,et al.  Antiferromagnetic long-range order in Cu 1-x Zn x GeO 3 with extremely low Zn concentration , 1998, cond-mat/9805072.

[27]  J. Oitmaa,et al.  NOVEL APPROACH TO DESCRIPTION OF SPIN-LIQUID PHASES IN LOW-DIMENSIONAL QUANTUM ANTIFERROMAGNETS , 1997, cond-mat/9712263.

[28]  A. Sandvik,et al.  Nonmagnetic impurities in spin-gapped and gapless Heisenberg antiferromagnets , 1997 .

[29]  Ali Yazdani,et al.  Probing the Local Effects of Magnetic Impurities on Superconductivity , 1997, Science.

[30]  S. Sachdev Theory of finite-temperature crossovers near quantum critical points close to,or above, their upper-critical dimension , 1996, cond-mat/9606083.

[31]  Katsnelson,et al.  1/N expansion for critical exponents of magnetic phase transitions in the CPN-1 model for 2 , 1996, Physical review. B, Condensed matter.

[32]  Read,et al.  Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. , 1990, Physical review. B, Condensed matter.

[33]  Read,et al.  Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. , 1989, Physical review letters.

[34]  M. Imada,et al.  Spin Wave Theory of the Two-Dimensional Heisenberg Antiferromagnet Coupled with Localized Holes , 1989 .

[35]  E. Witten Instantons, the Quark Model, and the 1/n Expansion , 1979 .

[36]  P. Vecchia,et al.  A 1/n Expandable Series of Nonlinear Sigma Models with Instantons , 1978 .