An extensible TCAD optimization framework combining gradient based and genetic optimizers

Abstract The siesta framework is an extensible tool for optimization and inverse modeling of semiconductor devices including dynamic load balancing, for taking advantage of several, loosely connected workstations. Two gradient-based and two evolutionary computation optimizers are currently available through a uniform interface and can be combined at will. At a real world inverse modeling example, we demonstrate that evolutionary computation optimizers provide several advantages over gradient-based optimizers, due to the specific properties of the objective functions in TCAD applications. Furthermore, we shortly discuss some issues arising in inverse modeling and conclude with a comparison of gradient-based and evolutionary computation optimizers from a TCAD point of view.

[1]  Paul Graham ANSI Common Lisp , 1995 .

[2]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[3]  Stephen W. Director,et al.  An object oriented approach to CAD tool control [VLSI] , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[6]  S. Selberherr,et al.  Practical inverse modeling with SIESTA , 1999, 1999 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD'99 (IEEE Cat. No.99TH8387).

[7]  Bull,et al.  An Overview of Genetic Algorithms: Part 2, Research Topics , 1993 .

[8]  S. Decoutere,et al.  Impact of technology scaling on the input and output features of RF-MOSFETs: effects and modeling , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[9]  Wayne R. Cowell,et al.  Sources and development of mathematical software , 1984 .

[10]  Siegfried Selberherr,et al.  Simulation of Semiconductor Devices and Processes , 1994, Springer Vienna.

[11]  Siegfried Selberherr,et al.  Closed-Loop MOSFET Doping Profile Optimization for Portable Systems , 1999 .

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  S. Selberherr,et al.  MINIMOS-NT: A Generic Simulator for Complex Semiconductor Devices , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[15]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[17]  Stefan Kubicek,et al.  A Powerful TCAD System Including Advanced RSM Techniques for Various Engineering Optimization Problems , 1993 .

[18]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[19]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[20]  John McCarthy,et al.  LISP 1.5 Programmer's Manual , 1962 .

[21]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .