Implicit and semi-implicit second-order time stepping methods for the Richards equation

Abstract This study concerns numerical methods for efficiently solving the Richards equation where different weak formulations and computational techniques are analyzed. The spatial discretizations are based on standard or mixed finite element methods. Different implicit and semi-implicit temporal discretization techniques of second-order accuracy are studied. To obtain a linear system for the semi-implicit schemes, we propose second-order techniques using extrapolation formulas and/or semi-implicit Taylor approximations for the temporal discretization of nonlinear terms. A numerical convergence study and a series of numerical tests are performed to analyze efficiency and robustness of the different schemes. The developed scheme, based on the proposed temporal extrapolation techniques and the mixed formulation involving the saturation and pressure head and using the standard linear Lagrange element, performs better than other schemes based on the saturation and the flux and using the Raviart-Thomas elements. The proposed semi-implicit scheme is a good alternative when implicit schemes meet convergence issues.

[1]  Fanilo Ramasomanana,et al.  An efficient lumped mixed hybrid finite element formulation for variably saturated groundwater flow. , 2009 .

[2]  M. C. Leverett,et al.  Capillary Behavior in Porous Solids , 1941 .

[3]  Fred T. Tracy Analytical and Numerical Solutions of Richards' Equation with Discussions on Relative Hydraulic Conductivity , 2011 .

[4]  R. H. Brooks,et al.  Properties of Porous Media Affecting Fluid Flow , 1966 .

[5]  Fred J. Molz,et al.  A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow , 1994 .

[6]  Joakim Becker,et al.  A second order backward difference method with variable steps for a parabolic problem , 1998 .

[7]  Georgios Akrivis,et al.  Stability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations , 2015, SIAM J. Numer. Anal..

[8]  H. Uzawa,et al.  Preference, production, and capital: Iterative methods for concave programming , 1989 .

[9]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[10]  P. Ackerer,et al.  A new mass lumping scheme for the mixed hybrid finite element method , 2006 .

[11]  Yves Bourgault,et al.  Mass-conservative and positivity preserving second-order semi-implicit methods for high-order parabolic equations , 2021, J. Comput. Phys..

[12]  Dmitri Kavetski,et al.  Noniterative time stepping schemes with adaptive truncation error control for the solution of Richards equation , 2002 .

[13]  R. L. Cooley Some new procedures for numerical solution of variably saturated flow problems , 1983 .

[14]  M. Bause Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity , 2008 .

[15]  Ernst Rank,et al.  On the importance of the discrete maximum principle in transient analysis using finite element methods , 1983 .

[16]  Peter Knabner,et al.  A priori error estimates for a mixed finite element discretization of the Richards’ equation , 2004, Numerische Mathematik.

[17]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[18]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[19]  Eric F. Wood,et al.  NUMERICAL EVALUATION OF ITERATIVE AND NONITERATIVE METHODS FOR THE SOLUTION OF THE NONLINEAR RICHARDS EQUATION , 1991 .

[20]  Ralf Kornhuber,et al.  Fast and Robust Numerical Solution of the Richards Equation in Homogeneous Soil , 2011, SIAM J. Numer. Anal..

[21]  Gianmarco Manzini,et al.  Mass-conservative finite volume methods on 2-D unstructured grids for the Richards’ equation , 2004 .

[22]  Christopher E. Kees,et al.  Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow , 2003 .

[23]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[24]  P. J. Ross,et al.  Modeling Soil Water and Solute Transport—Fast, Simplified Numerical Solutions , 2003 .

[25]  J.-Y. Parlange,et al.  Exact nonlinear solution for constant flux infiltration , 1988 .

[26]  Matthew W. Farthing,et al.  A comparison of high-resolution, finite-volume, adaptive-stencil schemes for simulating advective-dispersive transport , 2000 .

[27]  Karsten Pruess,et al.  Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media , 1995 .

[28]  Homer F. Walker,et al.  An accelerated Picard method for nonlinear systems related to variably saturated flow , 2012 .

[29]  F. T. Tracy,et al.  Clean two‐ and three‐dimensional analytical solutions of Richards' equation for testing numerical solvers , 2006 .

[30]  T. Phillips,et al.  Mixed finite element methods for groundwater flow in heterogeneous aquifers , 2013 .

[31]  Timothy J. Moroney,et al.  A mass-conservative control volume-finite element method for solving Richards’ equation in heterogeneous porous media , 2011 .

[32]  J. Parlange,et al.  Exact solution for nonlinear, nonhysteretic redistribution in vertical soil of finite depth , 1991 .

[33]  W. R. Gardner SOME STEADY‐STATE SOLUTIONS OF THE UNSATURATED MOISTURE FLOW EQUATION WITH APPLICATION TO EVAPORATION FROM A WATER TABLE , 1958 .

[34]  Yves Bourgault,et al.  Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations , 2020, Comput. Phys. Commun..

[35]  Philip Broadbridge,et al.  Constant rate rainfall infiltration: A versatile nonlinear model, I. Analytic solution , 1988 .

[36]  Cass T. Miller,et al.  Robust solution of Richards' equation for nonuniform porous media , 1998 .

[37]  Ben Schweizer,et al.  Regularization of outflow problems in unsaturated porous media with dry regions , 2007 .

[38]  P. Milly,et al.  A mass-conservative procedure for time-stepping in models of unsaturated flow , 1985 .

[39]  Vincenzo Casulli,et al.  A Nested Newton-Type Algorithm for Finite Volume Methods Solving Richards' Equation in Mixed Form , 2010, SIAM J. Sci. Comput..

[40]  François Lehmann,et al.  Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media , 1998 .

[41]  Kai Wang,et al.  Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media , 2020, Journal of Scientific Computing.

[42]  M. Crouzeix,et al.  The Convergence of Variable-Stepsize, Variable-Formula, Multistep Methods , 1984 .

[43]  E. Park,et al.  Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media , 2019 .

[44]  Clément Cancès,et al.  Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[45]  Florin A. Radu,et al.  Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media , 2014 .

[46]  Etienne Emmrich,et al.  Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator , 2009 .

[47]  R. Kornhuber,et al.  A multidomain discretization of the Richards equation in layered soil , 2015, Computational Geosciences.

[48]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[49]  Analytical Solution for One-Dimensional Drainage: Water Stored in a Fixed Depth , 1995 .

[50]  Yuanyuan Zha,et al.  A generalized Ross method for two- and three-dimensional variably saturated flow , 2013 .

[51]  H. Fujita The Exact Pattern of a Concentration-Dependent Diffusion in a Semi-infinite Medium, Part II , 1952 .

[52]  F. Radu,et al.  A study on iterative methods for solving Richards’ equation , 2015, Computational Geosciences.

[53]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[54]  Todd Arbogast,et al.  Numerical methods for the simulation of flow in root-soil systems , 1993 .

[55]  Mary Catherine A. Kropinski,et al.  Monotonicity Considerations for Saturated-Unsaturated Subsurface Flow , 1997, SIAM J. Sci. Comput..

[56]  K. Phoon,et al.  Numerical oscillation in seepage analysis of unsaturated soils , 2001 .

[57]  A. Warrick Soil Water Dynamics , 2003 .

[58]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[59]  Luca Bergamaschi,et al.  MIXED FINITE ELEMENTS AND NEWTON-TYPE LINEARIZATIONS FOR THE SOLUTION OF RICHARDS' EQUATION , 1999 .

[60]  Y. Coudière,et al.  Adaptive multistep time discretization and linearization based on a posteriori error estimates for the Richards equation , 2017 .

[61]  I. Pop,et al.  Regularization schemes for degenerate Richards equations and outflow conditions , 2011 .

[62]  Nick Croft,et al.  Computational modelling of variably saturated flow in porous media with complex three‐dimensional geometries , 2006 .

[63]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[64]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[65]  Mario Putti,et al.  A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems , 1994 .

[66]  Jin-zhong Yang,et al.  Comparison of Noniterative Algorithms Based on Different Forms of Richards’ Equation , 2016, Environmental Modeling & Assessment.

[67]  F. Radu,et al.  Mixed finite elements for the Richards' equation: linearization procedure , 2004 .

[68]  P. Knabner,et al.  Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods , 2004 .

[69]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[70]  Marc Ethier,et al.  Semi-Implicit Time-Discretization Schemes for the Bidomain Model , 2008, SIAM J. Numer. Anal..

[71]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[72]  Marián Slodicka,et al.  A Robust and Efficient Linearization Scheme for Doubly Nonlinear and Degenerate Parabolic Problems Arising in Flow in Porous Media , 2001, SIAM J. Sci. Comput..

[73]  Grégoire Allaire,et al.  Numerical analysis and optimization , 2007 .

[74]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[75]  J. Philip,et al.  Theory of Infiltration , 1969 .

[76]  Randel Haverkamp,et al.  A Comparison of Numerical Simulation Models For One-Dimensional Infiltration1 , 1977 .