A few remarks on colour–flavour transformations, truncations of random unitary matrices, Berezin reproducing kernels and Selberg-type integrals

We investigate diverse relations of the colour–flavour transformations (CFT) introduced by Zirnbauer in ‘Supersymmetry for systems with unitary disorder: circular ensembles’ (1996 J. Phys. A: Math. Gen. 29 7113–36) to various topics in random matrix theory and multivariate analysis, such as measures on truncations of unitary random matrices, Jacobi ensembles of random matrices, Berezin reproducing kernels and a generalization of the Selberg integral due to Kaneko, Kadell and Yan involving the Schur functions. Apart from suggesting explicit formulae for bosonic CFT for the unitary group in the range of parameters beyond that in Zirnbauer's paper we also suggest an alternative variant of the transformation with integration going over an unbounded domain of a pair of Hermitian matrices. The latter makes possible the evaluation of certain averages in random matrix theory.

[1]  Y. Fyodorov,et al.  On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices , 2006, math-ph/0602032.

[2]  P. Forrester Quantum conductance problems and the Jacobi ensemble , 2006, math-ph/0601024.

[3]  A. Orlov,et al.  Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions , 2005, math-ph/0512056.

[4]  S. Simon,et al.  Crossover from conserving to lossy transport in circular random-matrix ensembles. , 2005, Physical review letters.

[5]  J. Conrey,et al.  Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N) , 2005, math-ph/0511024.

[6]  S. Gnutzmann,et al.  Spectral correlations of individual quantum graphs. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  D. Bump,et al.  On the Averages of Characteristic Polynomials From Classical Groups , 2005, math-ph/0502043.

[8]  A. Orlov,et al.  Schur function expansion for normal matrix model and associated discrete matrix models , 2005, math-ph/0501017.

[9]  Y. Fyodorov On Hubbard–Stratonovich transformations over hyperbolic domains , 2004, math-ph/0409014.

[10]  A. Orlov New Solvable Matrix Integrals , 2002, nlin/0209063.

[11]  T. Wettig,et al.  Generalizations of some integrals over the unitary group , 2002, math-ph/0209030.

[12]  T. Wettig,et al.  The color-flavor transformation and lattice QCD , 2002, hep-lat/0208044.

[13]  Y. Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2002, nlin/0207051.

[14]  Y. Fyodorov,et al.  On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble , 2002, hep-th/0205215.

[15]  J. Budczies,et al.  (1+1)-dimensional baryons from the SU(N) color-flavor transformation , 2001, hep-lat/0112018.

[16]  M. Nowak,et al.  Wishart and anti-Wishart random matrices , 2001, math-ph/0112017.

[17]  T. Wettig,et al.  Color-flavor transformation for the special unitary group , 2001, hep-lat/0411038.

[18]  Y. Fyodorov Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation , 2001, math-ph/0106006.

[19]  Y. Neretin Hua-type integrals over unitary groups and over projective limits of unitary groups , 2000, math-ph/0010014.

[20]  A. Balantekin Character expansions, Itzykson-Zuber integrals, and the QCD partition function , 2000, hep-th/0007161.

[21]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[22]  M. Zirnbauer Erratum: “Toward a theory of the integer quantum Hall transition: Continuum limit of the Chalker–Coddington model” [J. Math. Phys. 38, 2007 (1997)] , 1999 .

[23]  A. Altland,et al.  Field theory of the random flux model , 1998, cond-mat/9811134.

[24]  M. Zirnbauer The color-flavor transformation and a new approach to quantum chaotic maps , 1998, chao-dyn/9810016.

[25]  Kevin W. J. Kadell The Selberg–Jack Symmetric Functions , 1997 .

[26]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[27]  M. Zirnbauer Toward a theory of the integer quantum Hall transition: Continuum limit of the Chalker–Coddington model , 1997, cond-mat/9701024.

[28]  A. Altland,et al.  Field Theory of the Quantum Kicked Rotor. , 1996, Physical review letters.

[29]  M. Zirnbauer Supersymmetry for systems with unitary disorder: circular ensembles , 1996, chao-dyn/9609007.

[30]  V. Kazakov,et al.  EXACT SOLUTION OF DISCRETE TWO-DIMENSIONAL R2 GRAVITY , 1996, hep-th/9601069.

[31]  Jyoichi Kaneko,et al.  Selberg integrals and hypergeometric functions associated with Jack polynomials , 1993 .

[32]  Z. Yan A Class of Generalized Hypergeometric Functions in Several Variables , 1992, Canadian Journal of Mathematics.

[33]  R. Stanley Some combinatorial properties of Jack symmetric functions , 1989 .

[34]  R. Howe,et al.  Remarks on classical invariant theory , 1989 .

[35]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[36]  P. A. Mello,et al.  Marginal distribution of an arbitrary square submatrix of the S-matrix for Dyson's measure , 1985 .

[37]  F. Berezin,et al.  QUANTIZATION IN COMPLEX SYMMETRIC SPACES , 1975 .

[38]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[39]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[40]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[41]  L. Hua Harmonic analysis of functions of several complex variables in the classical domains , 1963 .