Fusion Energy Research for ITER and Beyond

Abstract The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century.

[1]  Chihiro Yamanaka,et al.  Inertial confinement fusion: The quest for ignition and energy gain using indirect drive , 1999 .

[2]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[3]  N Hawkes,et al.  Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak. , 2007, Physical review letters.

[4]  Arnaud Devred,et al.  Status of the ITER magnets , 2009 .

[5]  Shuichi Takamura,et al.  Chapter 4: Power and particle control , 2007 .

[6]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[7]  N Mitchell,et al.  Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors , 2006 .

[8]  R. J. Hawryluk,et al.  Results from deuterium-tritium tokamak confinement experiments , 1997 .

[9]  Farrokh Najmabadi,et al.  Review of blanket designs for advanced fusion reactors , 2008 .

[10]  Keith H. Burrell,et al.  Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas , 2006 .

[11]  P T Lang,et al.  First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade. , 2011, Physical review letters.

[12]  A. Polevoi,et al.  Progress in the ITER Physics Basis - Chapter 1: Overview and summary , 2007 .

[13]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[14]  N. Kobayashi,et al.  Progress of high power 170 GHz gyrotron in JAEA , 2009 .

[15]  K. Kajiwara,et al.  Complete stabilization of a tearing mode in steady state high-βp H-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U , 2000 .

[16]  D. A. Humphreys,et al.  CONTROL OF NEOCLASSICAL TEARING MODES IN DIII-D , 2001 .

[17]  Yican Wu,et al.  Status of R&D activities on materials for fusion power reactors , 2007 .

[18]  G. Gantenbein,et al.  Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX Upgrade , 1999 .

[19]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[20]  G. F. Matthews,et al.  An ITER-like wall for JET , 2007 .

[21]  A. Polevoi,et al.  Chapter 1: Overview and summary , 2007 .

[22]  V. Erckmann,et al.  Design and construction of WENDELSTEIN 7-X , 2001 .

[23]  Jet Team,et al.  Fusion energy-production from a deuterium-tritium plasma in the jet tokamak , 1992 .

[24]  Rosaria Villari,et al.  Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up , 2007 .

[25]  Ronald Wenninger,et al.  ELM pacing investigations at JET with the new pellet launcher , 2011 .

[26]  J. Contributors,et al.  Survey of disruption causes at JET , 2011 .

[27]  L. Horton,et al.  ELM pace making and mitigation by pellet injection in ASDEX Upgrade , 2004 .

[28]  Ken Kajiwara,et al.  Steady-state operation of 170 GHz–1 MW gyrotron for ITER , 2008 .

[29]  P. Sardain,et al.  Power plant conceptual studies in Europe , 2007 .

[30]  E. J. Strait,et al.  COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D , 2003 .

[31]  F Turco,et al.  Demonstration of effective control of fast-ion-stabilized sawteeth by electron-cyclotron current drive. , 2009, Physical review letters.

[32]  David S. Gelles,et al.  Progress and critical issues of reduced activation ferritic/martensitic steel development , 2000 .

[33]  Joachim Roth,et al.  Tritium inventory in ITER plasma-facing materials and tritium removal procedures , 2008 .

[34]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .