On $M$-Processes and $M$-Estimation

[1]  L. L. Cam,et al.  On the Asymptotic Theory of Estimation and Testing Hypotheses , 1956 .

[2]  D. Relles Robust regression by modified least-squares , 1969 .

[3]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[4]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[5]  Jana Jurečková,et al.  Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model , 1977 .

[6]  V. Yohai,et al.  ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .

[7]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[8]  D. Pollard Convergence of stochastic processes , 1984 .

[9]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[10]  S. Portnoy Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .

[11]  Stephen Portnoy,et al.  Asymptotic Behavior of the Empiric Distribution of M-Estimated Residuals from a Regression Model with Many Parameters , 1986 .

[12]  A. Welsh Bahadur Representations for Robust Scale Estimators Based on Regression Residuals , 1986 .

[13]  P. Sen,et al.  A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions , 1987 .

[14]  Pranab Kumar Sen,et al.  An extension of Billingsley's uniform boundedness theorem to higher-dimensional M-processes , 1987, Kybernetika.

[15]  Raymond J. Carroll,et al.  A Note on Asymmetry and Robustness in Linear Regression , 1988 .

[16]  李幼升,et al.  Ph , 1989 .