On $M$-Processes and $M$-Estimation
暂无分享,去创建一个
[1] L. L. Cam,et al. On the Asymptotic Theory of Estimation and Testing Hypotheses , 1956 .
[2] D. Relles. Robust regression by modified least-squares , 1969 .
[3] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[4] P. Bickel. One-Step Huber Estimates in the Linear Model , 1975 .
[5] Jana Jurečková,et al. Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model , 1977 .
[6] V. Yohai,et al. ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .
[7] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[8] D. Pollard. Convergence of stochastic processes , 1984 .
[9] S. Portnoy. Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .
[10] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .
[11] Stephen Portnoy,et al. Asymptotic Behavior of the Empiric Distribution of M-Estimated Residuals from a Regression Model with Many Parameters , 1986 .
[12] A. Welsh. Bahadur Representations for Robust Scale Estimators Based on Regression Residuals , 1986 .
[13] P. Sen,et al. A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions , 1987 .
[14] Pranab Kumar Sen,et al. An extension of Billingsley's uniform boundedness theorem to higher-dimensional M-processes , 1987, Kybernetika.
[15] Raymond J. Carroll,et al. A Note on Asymmetry and Robustness in Linear Regression , 1988 .