A heterogeneous ouabain-ATPase interaction in mouse brain.

[1]  T. Akera,et al.  Increased (Na+,K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment. , 1978, The Journal of biological chemistry.

[2]  A. Schwartz,et al.  Effect of phospholipase A treatment on the partial reactions of and ouabain binding to a purified sodium and potassium activated adenosine triphosphatase. , 1978, Biochemical pharmacology.

[3]  L. Josephson,et al.  Isolation of a potent (Na-K)ATPase inhibitor from striated muscle. , 1977, Biochemistry.

[4]  I. Glynn,et al.  A modifier of (Na+ + K+) ATPase in commercial ATP , 1977, Nature.

[5]  S. Schacher,et al.  Synaptic activity of frog retinal photoreceptors. A peroxidase uptake study , 1976, The Journal of cell biology.

[6]  E. Erdmann,et al.  Ouabain-receptor interactions in (Na + +K + )-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. , 1973, Biochimica et biophysica acta.

[7]  K. Taniguchi,et al.  The role of phospholipids in the binding of ouabain to sodium- and potassium-dependent adenosine triphosphatase. , 1973, Molecular pharmacology.

[8]  K. Taniguchi,et al.  Two apparently different ouabain binding sites of (Na + -K + )-ATPase. , 1972, Biochimica et biophysica acta.

[9]  A. K. Sen,et al.  Species and tissue differences in the rate of dissociation of ouabain from (Na+ + K+)-ATPase. , 1972, Biochimica et biophysica acta.

[10]  T. Brody,et al.  Rates of dissociation of enzyme-ouabain complexes and K 0.5 values in (Na + + K + ) adenosine triphosphatase from different species. , 1972, Biochemical pharmacology.

[11]  G. Spears,et al.  A method for deriving kinetic constants for two enzymes acting on the same substrate. , 1971, The Biochemical journal.

[12]  T. Akera Quantitative aspects of the interaction between ouabain and (Na + + K + )-activated ATPase in vitro. , 1971, Biochimica et biophysica acta.

[13]  O. Z. Sellinger,et al.  A comparison of the ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebral cortex 1 , 1971, Journal of neurochemistry.

[14]  A. Schwartz,et al.  An allosteric explanation for ouabain-induced time-dependent inhibition of sodium, potassium-adenosine triphosphatase. , 1970, Archives of biochemistry and biophysics.

[15]  H. Matsui,et al.  Tritiated Digoxin Binding to (Na+ + K+)-Activated Adenosine Triphosphatase: Possible Allosteric Site , 1968, Science.

[16]  H. Matsui,et al.  Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. , 1968, Biochimica et biophysica acta.

[17]  K. Repke,et al.  Über die ursache der speciesunterschiede in der digitalisempfindlichkeit , 1965 .

[18]  M. Dixon The determination of enzyme inhibitor constants. , 1953, The Biochemical journal.

[19]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[20]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[21]  J. I. Korenbrot Ion transport in membranes: incorporation of biological ion-translocating proteins in model membrane systems. , 1977, Annual review of physiology.

[22]  Hokin Le,et al.  The sodium-potassium adenosinetriphosphatase. , 1974 .

[23]  J. Skou Further investigations on a Mg++ + Na+-activated adenosintriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane , 1960 .