Zero-sum-free tuples and hyperplane arrangements
暂无分享,去创建一个
[1] On the probability that the values of m polynomials have a given g.c.d. , 1987 .
[2] Fang Chen,et al. Long zero-free sequences in finite cyclic groups , 2007, Discret. Math..
[3] Yair Caro,et al. Zero-sum problems - A survey , 1996, Discret. Math..
[4] Anders Björner,et al. Subspace Arrangements over Finite Fields: Cohomological and Enumerative Aspects , 1997 .
[5] Wenhua Zhao. Mathieu Subspaces of Associative Algebras , 2010, 1005.4260.
[6] E. T. Bell. Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .
[7] R. Stanley. An Introduction to Hyperplane Arrangements , 2007 .
[8] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[9] Weidong Gao,et al. Zero-sum problems in finite abelian groups: A survey , 2006 .
[10] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[11] J. Brenner. The Hadamard Maximum Determinant Problem , 1972 .
[12] T. Apostol. Introduction to analytic number theory , 1976 .
[13] J. E Nymann. On the probability that k positive integers are relatively prime , 1972 .