Syntheses and Applications of Spirocyclopropyl Oxindoles: A Decade Review

[1]  Jing-ru Zhang,et al.  Time-Economical Synthesis of Bis-Spiro Cyclopropanes via Cascade 1,6-Conjugate Addition/Dearomatization Reaction of para -Quinone Methides with 3-Chlorooxindoles , 2020 .

[2]  Akash P Sakla,et al.  Microwave‐Assisted Regioselective Friedel–Crafts Arylation by BF 3  ⋅ OEt 2 : A Facile Synthetic Access to 3‐Substituted‐3‐Propargyl Oxindole Scaffolds , 2020 .

[3]  Akash P Sakla,et al.  Design and Synthesis of 5‐Morpholino‐Thiophene‐Indole/ Oxindole Hybrids as Cytotoxic Agents , 2020 .

[4]  Lin Chen,et al.  DABCO-Catalyzed Michael/Alkylation Cascade Reactions Involving α-Substituted Ammonium Ylides for the Construction of Spirocyclopropyl Oxindoles: Access to the Powerful Chemical Leads against HIV-1. , 2020, The Journal of organic chemistry.

[5]  Akash P Sakla,et al.  FeCl 3 ‐Catalyzed [3+2] Cycloaddition Reaction: A Mild Synthetic Approach to Spirooxindolo‐2‐iminothiazolidine Scaffolds , 2020 .

[6]  Nagula Shankaraiah,et al.  Reliability of Click Chemistry on Drug Discovery: A Personal Account. , 2020, Chemical record.

[7]  M. Melnikov,et al.  Chameleon-Like Activating Nature of the Spirooxindole Group in Donor-Acceptor Cyclopropanes. , 2019, Organic letters.

[8]  N. Ip,et al.  Asymmetric Total Syntheses of Rhynchophylline and Isorhynchophylline. , 2019, The Journal of organic chemistry.

[9]  M. Melnikov,et al.  Domino Michael/aza-Wittig reaction in the diastereoselective construction of spiro[azepane-4,3′-oxindoles] , 2019, Tetrahedron Letters.

[10]  Chun-fang Gan,et al.  Visible-Light-Induced Ring-Opening of Hydrogenolysis Spirocyclopropyl Oxindoles Through Photoredox Catalysis , 2019, European Journal of Organic Chemistry.

[11]  N. Maulide,et al.  Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts , 2019, Chemical reviews.

[12]  A. Kamal,et al.  Synthesis of substituted biphenyl methylene indolinones as apoptosis inducers and tubulin polymerization inhibitors. , 2019, Bioorganic chemistry.

[13]  Hua Yang,et al.  Construction of Bispirooxindole Heterocycles via Palladium-Catalyzed Ring-Opening Formal [3 + 2]-Cycloaddition of Spirovinylcyclopropyl Oxindole and 3-Oxindole Derivatives. , 2019, The Journal of organic chemistry.

[14]  Lili Lin,et al.  Catalytic Asymmetric Ring-Opening/Cyclopropanation of Cyclic Sulfur Ylides: Construction of Sulfur-Containing Spirocyclopropyloxindoles with Three Vicinal Stereocenters. , 2018, Organic letters.

[15]  Ramakrishna G. Bhat,et al.  Cycloaddition of isatin-derived MBH carbonates and 3-methyleneoxindoles to construct diastereoselective cyclopentenyl bis-spirooxindoles and cyclopropyl spirooxindoles: Catalyst controlled [3 + 2] and [2 + 1] annulations , 2018, Tetrahedron Letters.

[16]  Wenyuan Liu,et al.  A convenient cyclopropanation process of oxindoles via bromoethylsulfonium salt , 2018, Tetrahedron.

[17]  Linfeng Hu,et al.  Catalytic Asymmetric Synthesis of Chiral Spiro‐cyclopropyl Oxindoles from 3‐Alkenyl‐oxindoles and Sulfoxonium Ylides , 2018, Advanced Synthesis & Catalysis.

[18]  Jian Zhou,et al.  One-Pot Sequential [3 + 3] Dipolar Cycloaddition of Aldehyde or Ketone and Hydroxylamine with Spirocyclopropyl Oxindole. , 2018, The Journal of organic chemistry.

[19]  V. Y. Sosnovskikh,et al.  Reactivity of spiroanthraceneoxazolidines with cyclopropanes: An approach to the oxindole alkaloid scaffold , 2018, Tetrahedron Letters.

[20]  C. Godugu,et al.  Design and Synthesis of DNA‐Interactive β‐Carboline–Oxindole Hybrids as Cytotoxic and Apoptosis‐Inducing Agents , 2018, ChemMedChem.

[21]  Sayan Roy,et al.  Domino Corey-Chaykovsky Reaction for One-Pot Access to Spirocyclopropyl Oxindoles. , 2018, Organic letters.

[22]  S. V. Zaytsev,et al.  Nucleophilic Ring Opening of Donor-Acceptor Cyclopropanes with the Cyanate Ion: Access to Spiro[pyrrolidone-3,3'-oxindoles]. , 2018, The Journal of organic chemistry.

[23]  Jian Zhou,et al.  Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. , 2018, Accounts of chemical research.

[24]  C. Wolf,et al.  Organocatalytic Asymmetric Synthesis of α-Oxetanyl and α-Azetidinyl Tertiary Alkyl Fluorides and Chlorides. , 2018, Organic letters.

[25]  Xiao-Li Zhao,et al.  Diastereo- and enantioselective [3 + 3] cycloaddition of spirocyclopropyl oxindoles using both aldonitrones and ketonitrones , 2017, Nature Communications.

[26]  A. Majouga,et al.  3-(2-Azidoethyl)oxindoles: Advanced Building Blocks for One-Pot Assembly of Spiro[pyrrolidine-3,3'-oxindoles]. , 2017, The Journal of organic chemistry.

[27]  N. Shankaraiah,et al.  New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. , 2016, European journal of medicinal chemistry.

[28]  Pankaj Sharma,et al.  Design and synthesis of 4'-O-alkylamino-tethered-benzylideneindolin-2-ones as potent cytotoxic and apoptosis inducing agents. , 2016, Bioorganic & medicinal chemistry letters.

[29]  T. Talele The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. , 2016, Journal of medicinal chemistry.

[30]  Na Ye,et al.  Therapeutic Potential of Spirooxindoles as Antiviral Agents. , 2016, ACS infectious diseases.

[31]  A. Kamal,et al.  Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. , 2015, European journal of medicinal chemistry.

[32]  Hong-min Liu,et al.  Spirooxindoles: Promising scaffolds for anticancer agents. , 2015, European journal of medicinal chemistry.

[33]  Narendra Kumar Patel,et al.  The discovery of Polo-like kinase 4 inhibitors: design and optimization of spiro[cyclopropane-1,3'[3H]indol]-2'(1'H).ones as orally bioavailable antitumor agents. , 2015, Journal of medicinal chemistry.

[34]  B. Sridhar,et al.  Catalyst and solvent-free cyclopropanation of electron-deficient olefins with cyclic diazoamides for the synthesis of spiro[cyclopropane-1,3′-indolin]-2′-one derivatives , 2014 .

[35]  S. Muthusamy,et al.  Solvent- and transition metal-free synthesis of spiro[cyclopropane-1,3-oxindoles] from cyclic diazoamides , 2014 .

[36]  I. Järving,et al.  Asymmetric Diastereoselective Synthesis of Spirocyclopropane Derivatives of Oxindole , 2014 .

[37]  Abigail G Doyle,et al.  The chemistry of transition metals with three-membered ring heterocycles. , 2014, Chemical reviews.

[38]  Jian Zhou,et al.  Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: diazooxindole joins the field , 2014 .

[39]  W. Xiao,et al.  Synthesis of CF3-containing 3,3'-cyclopropyl spirooxindoles by sequential [3 + 2] cycloaddition/ring contraction of ylideneoxindoles with 2,2,2-trifluorodiazoethane. , 2014, The Journal of organic chemistry.

[40]  C. Oliver Kappe,et al.  Continuous flow generation and reactions of anhydrous diazomethane using a Teflon AF-2400 tube-in-tube reactor. , 2013, Organic letters.

[41]  Yixin Lu,et al.  Asymmetric synthesis of 3-spirocyclopropyl-2-oxindoles via intramolecular trapping of chiral aza-ortho-xylylene. , 2013, Chemical communications.

[42]  Jian Zhou,et al.  Highly stereoselective olefin cyclopropanation of diazooxindoles catalyzed by a C2-symmetric spiroketal bisphosphine/Au(I) complex. , 2013, Journal of the American Chemical Society.

[43]  I. Järving,et al.  3-Chlorooxindoles: versatile starting materials for asymmetric organocatalytic synthesis of spirooxindoles , 2013 .

[44]  A. Charette,et al.  Silver-promoted, palladium-catalyzed direct arylation of cyclopropanes: facile access to spiro 3,3'-cyclopropyl oxindoles. , 2013, Organic letters.

[45]  Jian Zhou,et al.  A highly diastereo- and enantioselective Hg(II)-catalyzed cyclopropanation of diazooxindoles and alkenes. , 2013, Organic letters.

[46]  F. Macaev,et al.  Highly enantio- and diastereoselective generation of two quaternary centers in spirocyclopropanation of oxindole derivatives. , 2012, Chemistry.

[47]  Xufeng Lin,et al.  A general access to 1,1-cyclopropane aminoketones and their conversion into 2-benzoyl quinolines. , 2012, Chemical communications.

[48]  G. S. Singh,et al.  Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. , 2012, Chemical reviews.

[49]  Daniel B. Werz,et al.  Ein Topf – zwei Phasen: Eisen-katalysierte Cyclopropanierung mit in situ erzeugtem Diazomethan† , 2012 .

[50]  D. Werz,et al.  One pot, two phases: iron-catalyzed cyclopropanation with in situ generated diazomethane. , 2012, Angewandte Chemie.

[51]  Yixin Lu,et al.  Diastereodivergent synthesis of 3-spirocyclopropyl-2-oxindoles through direct enantioselective cyclopropanation of oxindoles. , 2012, Chemistry.

[52]  Erick M Carreira,et al.  Iron-Catalyzed Cyclopropanation in 6 M KOH with in Situ Generation of Diazomethane , 2012, Science.

[53]  A. Mazzanti,et al.  Organocatalytic Michael-alkylation cascade: the enantioselective nitrocyclopropanation of oxindoles. , 2011, Chemistry.

[54]  D. Drewry,et al.  A rapid three-component MgI(2)-mediated synthesis of 3,3-pyrollidinyl spirooxindoles. , 2010, The Journal of organic chemistry.

[55]  S. Grimme,et al.  Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B. , 2010, Angewandte Chemie.

[56]  Karl A. Scheidt,et al.  Natürliche Pyrrolidinylspirooxindole als Vorlagen für die Entwicklung medizinischer Wirkstoffe , 2007 .

[57]  K. Scheidt,et al.  Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. , 2007, Angewandte Chemie.

[58]  Yan-Biao Kang,et al.  Highly enantioselective and diastereoselective cycloaddition of cyclopropanes with nitrones and its application in the kinetic resolution of 2-substituted cyclopropane-1,1-dicarboxylates. , 2007, Angewandte Chemie.

[59]  A. de Meijere,et al.  Three-membered-ring-based molecular architectures. , 2006, Chemical reviews.

[60]  J. Caldwell,et al.  Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. , 2006, Bioorganic & medicinal chemistry letters.

[61]  J. R. Fulton,et al.  The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis , 2005 .

[62]  P. Müller Asymmetric transfer of carbenes with phenyliodonium ylides. , 2004, Accounts of chemical research.

[63]  Apurba K Bhattacharjee,et al.  Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. , 2003, Journal of medicinal chemistry.

[64]  E. Carreira,et al.  First total synthesis of (+/-)-strychnofoline via a highly selective ring-expansion reaction. , 2002, Journal of the American Chemical Society.

[65]  J. Salaün,et al.  Cyclopropane Derivatives and their Diverse Biological Activities , 2000 .

[66]  C. Szántay,et al.  Chemistry of Indoles Carrying a Basic Function, Part 31 Synthesis of Spiro[cyclopropane‐1,3′[3H]indol]‐2′(1′H)‐ones with Antihypoxic Effects , 1996, Archiv der Pharmazie.

[67]  J. Krushinski,et al.  Dihydropyridazinone cardiotonics: synthesis and inotropic activity of 5'-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)spiro[cycloalkane- 1,3'-[3H]indol]-2'(1'H)-ones. , 1987, Journal of medicinal chemistry.

[68]  M. Eberle,et al.  Preparation of spiro[cyclopropane-1,3'-(3H)-indol]ones from isatin in a novel one-step process. A study of long-range chiral recognition , 1982 .

[69]  A. Meijere Bonding Properties of Cyclopropane and Their Chemical Consequences , 1979 .

[70]  A. D. Meijere Bindungseigenschaften des Cyclopropans und chemische Konsequenzen , 1979 .

[71]  T. Ho Hard soft acids bases (HSAB) principle and organic chemistry , 1975 .

[72]  H. Staudinger,et al.  Insektentötende Stoffe I. Über Isolierung und Konstitution des wirksamen Teiles des dalmatinischen Insektenpulvers , 1924 .