Formalization of Bernstein Polynomials and Applications to Global Optimization

This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.

[1]  Luis G. Crespo,et al.  Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions , 2011 .

[2]  Assia Mahboubi,et al.  Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination , 2012 .

[3]  Paul B. Jackson,et al.  Combined Decision Techniques for the Existential Theory of the Reals , 2009, Calculemus/MKM.

[4]  Roland Zumkeller Formal Global Optimisation with Taylor Models , 2006, IJCAR.

[5]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[6]  Andrea Asperti,et al.  A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions , 2012, Log. Methods Comput. Sci..

[7]  Karl Nickel Proceedings of the International Symposium on interval mathematics on Interval mathematics 1985 , 1986 .

[8]  John A. Alford Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval , 2012 .

[9]  David Delahaye,et al.  Field, une procédure de décision pour les nombres réels en Coq , 2001, JFLA.

[10]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[11]  Fabrizio Lombardi State of the Journal , 2008 .

[12]  Warren A. Hunt,et al.  Linear and Nonlinear Arithmetic in ACL2 , 2003, CHARME.

[13]  Jürgen Garloff,et al.  Application of Bernstein Expansion to the Solution of Control Problems , 2000, Reliab. Comput..

[14]  Assia Mahboubi,et al.  Implementing the cylindrical algebraic decomposition within the Coq system , 2007, Mathematical Structures in Computer Science.

[15]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[16]  César A. Muñoz,et al.  Verified Real Number Calculations: A Library for Interval Arithmetic , 2007, IEEE Transactions on Computers.

[17]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[18]  Guillaume Melquiond Proving Bounds on Real-Valued Functions with Computations , 2008, IJCAR.

[19]  Belaid Moa Interval methods for global optimization , 2007 .

[20]  James K. Kuchar,et al.  A review of conflict detection and resolution modeling methods , 2000, IEEE Trans. Intell. Transp. Syst..

[21]  Assia Mahboubi,et al.  A formal study of Bernstein coefficients and polynomials† , 2011, Mathematical Structures in Computer Science.

[22]  Grant Olney Passmore,et al.  Combined decision procedures for nonlinear arithmetics, real and complex , 2011 .

[23]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[24]  Jürgen Garloff Convergent Bounds for the Range of Multivariate Polynomials , 1985, Interval Mathematics.

[25]  Ulrich Furbach,et al.  Proceedings of the Third international joint conference on Automated Reasoning , 2006 .

[26]  Marc Daumas,et al.  A library of Taylor models for PVS automatic proof checker , 2006, ArXiv.

[27]  Pierre Corbineau,et al.  On the Generation of Positivstellensatz Witnesses in Degenerate Cases , 2011, ITP.

[28]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[29]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[30]  Nicolas Brisebarre,et al.  Rigorous Polynomial Approximation Using Taylor Models in Coq , 2012, NASA Formal Methods.

[31]  Dennis M. Bushnell,et al.  Real automation in the field , 2001 .

[32]  John Harrison,et al.  Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.

[33]  Myla Archer,et al.  Design and Application of Strategies/Tactics in Higher Order Logics , 2003 .

[34]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[35]  Andrew Paul Smith,et al.  Fast construction of constant bound functions for sparse polynomials , 2009, J. Glob. Optim..

[36]  J. Abbott,et al.  Approximate Commutative Algebra , 2009 .

[37]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[38]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[39]  Florent de Dinechin,et al.  Certifying the Floating-Point Implementation of an Elementary Function Using Gappa , 2011, IEEE Transactions on Computers.

[40]  Alessandro Armando Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings , 2008, IJCAR.

[41]  J. Garlo,et al.  The Bernstein Algorithm , 1994 .

[42]  Shashwati Ray,et al.  An efficient algorithm for range computation of polynomials using the Bernstein form , 2009, J. Glob. Optim..

[43]  Ben L. Di Vito Manip User ’ s Guide , Version 1 . 3 , 2007 .

[44]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[45]  Paluri S. V. Nataraj,et al.  A new subdivision algorithm for the Bernstein polynomial approach to global optimization , 2007, Int. J. Autom. Comput..

[46]  John Harrison,et al.  A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.

[47]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[48]  Mircea D. Farcas,et al.  About Bernstein polynomials , 2008 .