Ti-based compounds as anode materials for Li-ion batteries

Li-ion batteries are one of the most promising electrochemical power sources to be widely used in portable electronics, electric vehicles, and stationary energy storage systems. Ti-based materials have been intensively investigated as important anodes for Li-ion batteries due to their high safety and excellent cycling stability. The present work reviews the latest advances in the exploration and development of Ti-based compounds, such as Li4Ti5O12, Li2Ti3O7, TiO2-B and H2Ti3O7, as high performance anode materials for Li-ion batteries. The relationship between the preparation, composition, structure, morphology and electrochemical performance are summarized and analyzed. Further, the related advancements and challenges in practical energy applications are discussed.

[1]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[2]  J. Pérez-Flores,et al.  Synthesis, structure and electrochemical Li insertion behaviour of Li2Ti6O13 with the Na2Ti6O13 tunnel-structure , 2011 .

[3]  Chuan Wu,et al.  Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 , 2008 .

[4]  Yongyao Xia,et al.  Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation , 2007 .

[5]  P. Umek,et al.  Reversible lithium insertion into Na2Ti6O13 structure , 2006 .

[6]  Zongping Shao,et al.  Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance , 2009 .

[7]  Hailei Zhao,et al.  Structural and electrochemical characteristics of Li4−xAlxTi5O12 as anode material for lithium-ion batteries , 2008 .

[8]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[9]  Xiaogang Zhang,et al.  In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries , 2011 .

[10]  B. G. Hyde David Wadsley's collaboration with Sten Andersson in the 1960s (and with Roth and Gatehouse) , 2003 .

[11]  O. Yakubovich,et al.  Refinement of the crystal structure of Na2Ti3O7 , 2003 .

[12]  Hongda Du,et al.  Structure and Electrochemical Properties of Zn-Doped Li4Ti5O12 as Anode Materials in Li-Ion Battery , 2010 .

[13]  Kwang‐Bum Kim,et al.  Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries , 2010 .

[14]  Lihong Yang,et al.  Hybrid microwave synthesis and characterization of the compounds in the Li–Ti–O system , 2008 .

[15]  J. Wolfenstine,et al.  Electrical conductivity and charge compensation in Ta doped Li4Ti5O12 , 2008 .

[16]  Zongping Shao,et al.  Preparation and re‐examination of Li4Ti4.85Al0.15O12 as anode material of lithium‐ion battery , 2011 .

[17]  K. West,et al.  All oxide solid-state lithium-ion cells , 1997 .

[18]  Yo Kobayashi,et al.  Relationship between electrochemical behavior and Li/vacancy arrangement in ramsdellite type Li2+xTi3O7 , 2009 .

[19]  J. Gale,et al.  A first principles investigation of lithium intercalation in TiO2-B , 2009 .

[20]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[21]  Z. Wen,et al.  Preparation and electrochemical performance of Ag doped Li4Ti5O12 , 2004 .

[22]  Q. Lai,et al.  Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery , 2005 .

[23]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[24]  Jaephil Cho,et al.  Rate Characteristics of Anatase TiO2 Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature , 2007 .

[25]  S. Kikkawa,et al.  Ionic conductivities of Na2Ti3O7, K2Ti4O9 and their related materials , 1985 .

[26]  Xun Wang,et al.  Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. , 2010, Chemical communications.

[27]  Z. Wen,et al.  Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method , 2007 .

[28]  Tingfeng Yi,et al.  High-performance Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery , 2009 .

[29]  L. Kavan,et al.  Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes , 1999 .

[30]  Tingfeng Yi,et al.  Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method , 2011 .

[31]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[32]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[33]  L. Dupont,et al.  Alkali hexatitanates—A2Ti6O13 (A = Na, K) as host structure for reversible lithium insertion , 2007 .

[34]  H. Hayakawa,et al.  Ion-Exchange Synthesis, Crystal Structure, and Electrochemical Properties of Li2Ti6O13. , 2011 .

[35]  Zilong Tang,et al.  H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability , 2005 .

[36]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[37]  Haijiao Zhang,et al.  Li Storage Properties of Disordered Graphene Nanosheets , 2009 .

[38]  P. Bruce,et al.  Refinement of the lithium distribution in Li2Ti3O7 using high-resolution powder neutron diffraction , 1989 .

[39]  B. Scrosati,et al.  Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .

[40]  Hui Yang,et al.  Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method , 2011 .

[41]  Ke Yang,et al.  Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction , 2011 .

[42]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[43]  Seok-Gwang Doo,et al.  Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. , 2008, Journal of the American Chemical Society.

[44]  Q. Lai,et al.  Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials , 2007 .

[45]  Junjie Huang,et al.  Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres , 2010 .

[46]  S. Dai,et al.  Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. , 2009, Journal of the American Chemical Society.

[47]  M. Verbrugge,et al.  Electrochemical and structural characterization of lithium titanate electrodes , 2010 .

[48]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[49]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[50]  M. Nakayama,et al.  Mixed conduction for the spinel type (1−x)Li4/3Ti5/3O4–xLiCrTiO4 system , 1999 .

[51]  P. Mustarelli,et al.  Cations Distribution and Valence States in Mn-Substituted Li4Ti5O12 Structure , 2008 .

[52]  Jiayan Luo,et al.  General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation , 2010 .

[53]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .

[54]  Yongyao Xia,et al.  Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors , 2006 .

[55]  H. Tukamoto,et al.  Li1 + x Fe1 − 3x Ti1 + 2x O 4 (0.0 ≤ x ≤ 0.33) Based Spinels: Possible Negative Electrode Materials for Future Li‐Ion Batteries , 1999 .

[56]  Na Wang,et al.  Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications , 2008 .

[57]  Karim Zaghib,et al.  Electrochemistry of Anodes in Solid‐State Li‐Ion Polymer Batteries , 1998 .

[58]  Shaohua Fang,et al.  Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries , 2010 .

[59]  S. Dai,et al.  Fluidic Carbon Precursors for Formation of Functional Carbon under Ambient Pressure Based on Ionic Liquids , 2010, Advanced materials.

[60]  B. Scrosati,et al.  Iron-Substituted Lithium Titanium Spinels: Structural and Electrochemical Characterization , 2003 .

[61]  Qiang Wang,et al.  A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode , 2006 .

[62]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[63]  S. Das,et al.  High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon , 2010 .

[64]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[65]  A. Jalbout,et al.  LiFePO4 as an optimum power cell material , 2009 .

[66]  Haoshen Zhou,et al.  Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material , 2007 .

[67]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[68]  Susumu Yoshikawa,et al.  Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand , 2005 .

[69]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[70]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[71]  Zilong Tang,et al.  Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes , 2005 .

[72]  Haoshen Zhou,et al.  High rate performances of hydrogen titanate nanowires electrodes , 2008 .

[73]  M. Inaba,et al.  TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries , 2009 .

[74]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[75]  Mianqi Xue,et al.  Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries , 2010 .

[76]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[77]  Xueping Gao,et al.  Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. , 2004, Journal of the American Chemical Society.

[78]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[79]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[80]  Z. Wen,et al.  Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y , 2005 .

[81]  Zaiping Guo,et al.  Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .

[82]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[83]  F. García-Alvarado,et al.  Electrochemical lithium intercalation in Li2Ti3O7-ramsdellite structure , 1997 .

[84]  M. Antonietti,et al.  Toward a Low-Temperature Sol-Gel Synthesis of TiO₂(B) Using Mixtures of Surfactants and Ionic Liquids , 2010 .

[85]  F. García-Alvarado,et al.  Structural Study of Electrochemically Obtained Li2+xTi3O7 , 2000 .

[86]  J. Jumas,et al.  Effect of the substitution Ti/(Fe,Ni) on the electrochemical properties of Li2Ti3O7 as electrode materials for Li-ion accumulators , 2006 .

[87]  M. Willinger,et al.  Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications , 2011 .

[88]  Zaiping Guo,et al.  TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance , 2011 .

[89]  Yu‐Guo Guo,et al.  Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries , 2009 .

[90]  M. Antonietti,et al.  Ionic Liquids as Precursors for Nitrogen‐Doped Graphitic Carbon , 2010, Advanced materials.

[91]  K. Müllen,et al.  Nanographene‐Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage , 2010, Advanced materials.

[92]  Thomas Gennett,et al.  Single Wall Carbon Nanotube−Nafion Composite Actuators , 2002 .

[93]  Zhong-Min Su,et al.  Optimized LiFePO4–Polyacene Cathode Material for Lithium‐Ion Batteries , 2006 .

[94]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[95]  H. Tukamoto,et al.  New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries , 1999 .

[96]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[97]  Kuang‐Che Hsiao,et al.  Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries , 2008 .

[98]  Y. Huang,et al.  Reversible lithium storage in Na2Li2Ti6O14 as anode for lithium ion batteries , 2009 .

[99]  Jae-won Lee,et al.  Spinel Li4Ti5O12 Nanotubes for Energy Storage Materials , 2009 .

[100]  P. Strobel,et al.  Neutron diffraction and Mössbauer studies of iron substituted Li2Ti3O7 of ramsdellite-type as negative electrode for Li-ion accumulator , 2006 .

[101]  J. Goodenough,et al.  Ion-exchange reactions of mixed oxides , 1983 .

[102]  Xing Li,et al.  Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries , 2009 .

[103]  M. Ganesan Li4Ti2.5Cr2.5O12 as anode material for lithium battery , 2008 .

[104]  Heon-Cheol Shin,et al.  Lithium transport through Li1+δ[Ti2−yLiy]O4 (y=0; 1/3) electrodes by analysing current transients upon large potential steps , 1999 .

[105]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[106]  Q. Lai,et al.  Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material , 2007 .

[107]  T. Jow,et al.  Low temperature performance of nanophase Li4Ti5O12 , 2006 .

[108]  Z. Wen,et al.  Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries , 2007 .

[109]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[110]  J. Olivier-Fourcade,et al.  Metal-doped Li2Ti3O7 with ramsdellite structure as high voltage anode for new generation Li-ion batteries , 2007 .

[111]  Liquan Chen,et al.  Ab initio investigation of the surface properties of Cu(111) and Li diffusion in Cu thin film , 2005 .

[112]  M. Wagemaker,et al.  Size effects in the Li(4+x)Ti(5)O(12) spinel. , 2009, Journal of the American Chemical Society.

[113]  Zhiyu Jiang,et al.  The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery , 2008 .

[114]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[115]  C. Geantet,et al.  Synthesis of solid materials in molten nitrates , 1998 .

[116]  Haoshen Zhou,et al.  Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode , 2007 .

[117]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[118]  J. Tarascon,et al.  Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode , 2010 .

[119]  Li Yang,et al.  Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries , 2009 .

[120]  M. Antonietti,et al.  A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials , 2010 .

[121]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[122]  Justin C. Lytle,et al.  Effect of a Macropore Structure on Cycling Rates of LiCoO2 , 2005 .

[123]  Petr Novák,et al.  In situ neutron diffraction study of Li insertion in Li4Ti5O12 , 2010 .

[124]  Zilong Tang,et al.  Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 , 2005 .

[125]  P. Heitjans,et al.  Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[126]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[127]  Y. Idemoto,et al.  Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure , 2008 .

[128]  K. Sawai,et al.  Electrochemistry and Structural Chemistry of Li [ CrTi ] O 4 ( Fd3̄m ) in Nonaqueous Lithium Cells , 2000 .

[129]  M. Wagemaker,et al.  Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). , 2009, The journal of physical chemistry. B.

[130]  X. Pan,et al.  High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries , 2008 .

[131]  S. C. Parker,et al.  Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study , 2010 .

[132]  J. Rodríguez-Carvajal,et al.  Insight into ramsdellite LI(2)Ti(3)O(7) and its proton-exchange derivative. , 2009, Inorganic chemistry.

[133]  Gang Yang,et al.  Microwave solid-state synthesis of LiV(3)O(8) as cathode material for lithium batteries. , 2005, The journal of physical chemistry. B.

[134]  C. Cho,et al.  Synthesis of Heterogeneous Li4Ti5O12 Nanostructured Anodes with Long-Term Cycle Stability , 2010, Nanoscale research letters.

[135]  Huaiyong Zhu,et al.  Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes , 2005 .

[136]  Yongyao Xia,et al.  Structural transformation of layered hydrogen trititanate (H2Ti3O7) to TiO2(B) and its electrochemical profile for lithium-ion intercalation , 2011 .

[137]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[138]  L. Torres-Martínez,et al.  Rietveld refinement of sol–gel Na2Ti6O13 and its photocatalytic performance on the degradation of methylene blue , 2008 .

[139]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[140]  Xiaogang Zhang,et al.  In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. , 2011, Nanoscale.

[141]  Haoshen Zhou,et al.  Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells , 2006 .

[142]  Z. Mazej,et al.  Effect of Conductive Additives and Surface Fluorination on the Electrochemical Properties of Lithium Titanate ( Li4 / 3Ti5 / 3O4 ) , 2010 .

[143]  Jong Pil Park,et al.  Preparation of Li4Ti5O12 nanoparticles by a simple sonochemical method , 2007 .

[144]  P. Bruce,et al.  Nanotubes with the TiO2-B structure. , 2005, Chemical communications.

[145]  Jerry D. Harris,et al.  Carbon nanotubes for power applications , 2005 .

[146]  Li Yang,et al.  Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries , 2009 .

[147]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[148]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[149]  Yongyao Xia,et al.  A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries , 2011 .

[150]  A. S. Araujo,et al.  Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials , 2007, Nanotechnology.

[151]  A. Kuhn,et al.  New electrode materials for lithium rechargeable batteries , 1999 .

[152]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[153]  G. Zou,et al.  Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. , 2008, Inorganic chemistry.

[154]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[155]  B. Antić,et al.  Cation ordering and order–disorder phase transitionin Co‐substituted Li4Ti5O12 spinels , 2003 .

[156]  M. Yoshio,et al.  Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere , 2004 .

[157]  Jing-ying Xie,et al.  Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method , 2008 .

[158]  Z. Wen,et al.  Preparation and Electrochemical Performance of Spinel-Type Compounds Li4Al y Ti5 − y O 12 ( y = 0 , 0.10, 0.15, 0.25) , 2005 .

[159]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[160]  Zhongtai Zhang,et al.  Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties , 2005 .

[161]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[162]  Lian-Mao Peng,et al.  Structure and formation ofH2Ti3O7nanotubes in an alkali environment , 2005 .

[163]  H. Sheu,et al.  Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process , 2009 .

[164]  Zhongdong Peng,et al.  Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery , 2010, Journal of Central South University.

[165]  Xiaogang Zhang,et al.  Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries , 2010 .

[166]  W. Kim,et al.  Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries , 2010 .

[167]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[168]  S. Das,et al.  Effect of Nanostructuring and Ex situ Amorphous Carbon Coverage on the Lithium Storage and Insertion Kinetics in Anatase Titania , 2010 .

[169]  Hui Yang,et al.  Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries , 2007 .

[170]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[171]  Xiao Hua Yang,et al.  Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.

[172]  A. Goossens,et al.  In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .

[173]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[174]  Hong Liu,et al.  One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications , 2010 .

[175]  Tingfeng Yi,et al.  Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V , 2010 .

[176]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[177]  Z. Wen,et al.  Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery , 2006 .

[178]  R. Samigullina,et al.  Structural Aspects of Lithium Transfer in Solid Electrolytes Li2xZn2-3xTi1+xO4 (0.33≤ x≤ 0.67) , 2004 .

[179]  J. Duh,et al.  Porous Li4Ti5O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement , 2011 .

[180]  Yu‐Guo Guo,et al.  Facile Synthesis of Mesoporous TiO2−C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4−C Cathode , 2010 .

[181]  Dong‐Wan Kim,et al.  Enhanced Rate Capabilities of Nanobrookite with Electronically Conducting MWCNT Networks , 2008 .

[182]  G. C. Mather,et al.  Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2 – 2xTi1 + 0.67xO4 , 1996 .

[183]  J. Duh,et al.  Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries , 2011 .

[184]  Min Gyu Kim,et al.  Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material , 2008 .

[185]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[186]  Weishan Li,et al.  Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. , 2010, ACS nano.

[187]  P. Mustarelli,et al.  Cr and Ni Doping of Li4Ti5O12: Cation Distribution and Functional Properties , 2009 .

[188]  Z. Zhong Synthesis of Mo4 + Substituted Spinel Li4Ti5 − x Mo x O12 , 2007 .

[189]  J. Dahn,et al.  Dependence of the Heat of Reaction of Li0.81C6 ( 0.1 V ) , Li7Ti5O12 ( 1.55 V ) , and Li0.5VO2 ( 2.45 V ) Reacting with Nonaqueous Solvents or Electrolytes on the Average Potential of the Electrode Material , 2006 .

[190]  X. Zhao,et al.  Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets , 2011 .

[191]  Congxiao Wang,et al.  Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries , 2011 .

[192]  Xing Li,et al.  Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite , 2010 .

[193]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[194]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[195]  Z. Wen,et al.  The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries , 2008 .

[196]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[197]  Q. Hao,et al.  Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties , 2011 .

[198]  Yarong Wang,et al.  Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon , 2009 .