Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits

Indium oxide (In2O3) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm2V−1s−1 and 16 cm2V−1s−1 for coplanar and staggered architectures, respectively. Integration of In2O3 transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In2O3 also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In2O3 transistors exhibit good characteristics and remain fully functional even when bent to tensile radii of 4 mm.

[1]  Luisa Petti,et al.  Flexible Self-Aligned Amorphous InGaZnO Thin-Film Transistors With Submicrometer Channel Length and a Transit Frequency of 135 MHz , 2013, IEEE Transactions on Electron Devices.

[2]  H. Fritzsche,et al.  Photoreduction and oxidation of as‐deposited microcrystalline indium oxide , 1996 .

[3]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[4]  Sigurd Wagner,et al.  43.3: A Rugged Conformable Backplane Fabricated with an a‐Si:H TFT Array on a Polyimide Substrate , 2002 .

[5]  Young-Jin Kwack,et al.  Inkjet-printed In(2)O(3) thin-film transistor below 200 °C. , 2013, ACS applied materials & interfaces.

[6]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[7]  Sigurd Wagner,et al.  a-Si:H thin film transistors after very high strain , 2000 .

[8]  E. Fortunato,et al.  Transparent thin film transistors based on indium oxide semiconductor , 2006 .

[9]  Tobin J. Marks,et al.  High performance solution-processed indium oxide thin-film transistors. , 2008, Journal of the American Chemical Society.

[10]  Takhee Lee,et al.  Nanotechnology-based flexible electronics , 2012, Nanotechnology.

[11]  Pedro Barquinha,et al.  Performances of Microcrystalline Zinc Tin Oxide Thin-Film Transistors Processed by Spray Pyrolysis , 2013, Journal of Display Technology.

[12]  Stuart R. Thomas,et al.  High electron mobility thin-film transistors based on Ga2O3 grown by atmospheric ultrasonic spray pyrolysis at low temperatures , 2014 .

[13]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .

[14]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[15]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[16]  Chih-hung Chang,et al.  Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. , 2011, Journal of the American Chemical Society.

[17]  Thomas D. Anthopoulos,et al.  p-channel thin-film transistors based on spray-coated Cu2O films , 2013 .

[18]  Sanjay R. Mishra,et al.  Growth and characterization of In2O3 thin films prepared by pulsed laser deposition , 2007 .

[19]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[20]  Takao Someya,et al.  11.2: Invited Paper: Imperceptible Electronic Skin , 2014 .

[21]  W. Siefert Properties of thin In2O3 and SnO2 films prepared by corona spray pyrolysis, and a discussion of the spray pyrolysis process , 1984 .

[22]  Stuart R. Thomas,et al.  Be-Doped ZnO Thin-Film Transistors and Circuits Fabricated by Spray Pyrolysis in Air , 2013, Journal of Display Technology.

[23]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[24]  Stuart R. Thomas,et al.  Solution-processable metal oxide semiconductors for thin-film transistor applications. , 2013, Chemical Society reviews.

[25]  Jae Kyeong Jeong The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays , 2011 .

[26]  L. Frey,et al.  High-mobility metal-oxide thin-film transistors by spray deposition of environmentally friendly precursors , 2014 .

[27]  R. L. Weiher Electrical Properties of Single Crystals of Indium Oxide , 1962 .

[28]  Paul H. Wöbkenberg,et al.  High‐Mobility Low‐Voltage ZnO and Li‐Doped ZnO Transistors Based on ZrO2 High‐k Dielectric Grown by Spray Pyrolysis in Ambient Air , 2011, Advanced materials.

[29]  W. F. Ramirez,et al.  Kinetics and Modeling of Wet Etching of Aluminum Oxide by Warm Phosphoric Acid , 1996 .

[30]  Gerhard Tröster,et al.  Investigation of gate material ductility enables flexible a-IGZO TFTs bendable to a radius of 1.7 mm , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[31]  K. Cherenack,et al.  The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs , 2011, IEEE Transactions on Electron Devices.

[32]  M. Halik,et al.  Fully Patterned Low‐Voltage Transparent Metal Oxide Transistors Deposited Solely by Chemical Spray Pyrolysis , 2013 .

[33]  T. Alford,et al.  Effect of Mechanical and Electromechanical Stress on a-ZIO TFTs , 2010, IEEE Electron Device Letters.

[34]  Jurriaan Huskens,et al.  Fabrication of Transistors on Flexible Substrates: from Mass‐Printing to High‐Resolution Alternative Lithography Strategies , 2012, Advanced materials.

[35]  J. Oh,et al.  Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. , 2013, ACS applied materials & interfaces.