Pure drug nanoparticles in tablets: what are the dissolution limitations?

[1]  J. Varshosaz,et al.  Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology , 2009 .

[2]  J. Raper,et al.  Dissolution kinetic behavior of drug nanoparticles and their conformity to the diffusion model. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[3]  J. Raper,et al.  What is a Suitable Dissolution Method for Drug Nanoparticles? , 2008, Pharmaceutical Research.

[4]  Y. Choa,et al.  Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method , 2007 .

[5]  Jonghwi Lee,et al.  Nanoscopic friction behavior of pharmaceutical materials. , 2007, International journal of pharmaceutics.

[6]  Alexander T Florence,et al.  Pharmaceutical nanotechnology: more than size. Ten topics for research. , 2007, International journal of pharmaceutics.

[7]  Filippos Kesisoglou,et al.  Application of Nanoparticles in Oral Delivery of Immediate Release Formulations , 2007 .

[8]  Vincent Castranova,et al.  Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity , 2007 .

[9]  Jianfeng Chen,et al.  Preparation and Characterization of Amorphous Cefuroxime Axetil Drug Nanoparticles with Novel Technology: High-Gravity Antisolvent Precipitation , 2006 .

[10]  Jianfeng Chen,et al.  Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. , 2006, International journal of pharmaceutics.

[11]  Panos Macheras,et al.  A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. , 2006, International journal of pharmaceutics.

[12]  Rainer H. Müller,et al.  Drug Nanocrystals/Nanosuspensions for the Delivery of Poorly Soluble Drugs , 2006 .

[13]  B. Leclerc,et al.  Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  A F Thünemann,et al.  Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. , 2006, International journal of pharmaceutics.

[15]  Ernesto Reverchon,et al.  Nanomaterials and supercritical fluids , 2006 .

[16]  Uday B. Kompella,et al.  Nanoparticle technology for drug delivery , 2006 .

[17]  Ram B. Gupta,et al.  Fundamentals of Drug Nanoparticles , 2006 .

[18]  L. Augsburger,et al.  Functionality comparison of 3 classes of superdisintegrants in promoting aspirin tablet disintegration and dissolution , 2005, AAPS PharmSciTech.

[19]  E. Sacher,et al.  Surface diffusion and coalescence of mobile metal nanoparticles. , 2005, The journal of physical chemistry. B.

[20]  G Vergnault,et al.  Nanosuspension Formulations for Low-Soluble Drugs: Pharmacokinetic Evaluation Using Spironolactone as Model Compound , 2005, Drug development and industrial pharmacy.

[21]  Vandana B. Patravale,et al.  Current strategies for engineering drug nanoparticles , 2004 .

[22]  Ho-Cheol Kim,et al.  Nanoscale effects leading to non-Einstein-like decrease in viscosity , 2003, Nature materials.

[23]  Jonghwi Lee Drug nano- and microparticles processed into solid dosage forms: physical properties. , 2003, Journal of pharmaceutical sciences.

[24]  Robert K. Prud'homme,et al.  Chemical Processing and Micromixing in Confined Impinging Jets , 2003 .

[25]  M. López-Quintela,et al.  Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control ☆ , 2003 .

[26]  E. Kauppinen,et al.  Aerosol flow reactor method for synthesis of drug nanoparticles. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  D. Flanagan,et al.  General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. , 2002, Journal of pharmaceutical sciences.

[28]  L. Bartell,et al.  Structure and properties of potassium iodide nanoparticles. A molecular dynamics study , 2001 .

[29]  D. F. Steele,et al.  Directional Bonding in Compacted Microcrystalline Cellulose , 2001, Drug development and industrial pharmacy.

[30]  D. F. Steele,et al.  The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. , 2000, International journal of pharmaceutics.

[31]  D. Flanagan,et al.  General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. , 1999, Journal of pharmaceutical sciences.

[32]  K. Imada,et al.  Morphological effect of microcrystalline cellulose particles on tablet tensile strength. , 1999, International journal of pharmaceutics.

[33]  D. Storey,et al.  Design and characterization of a surfactant-enriched tablet formulation for oral delivery of a poorly water-soluble immunosuppressive agent. , 1999, International journal of pharmaceutics.

[34]  P. Stewart,et al.  Deaggregation during the dissolution of benzodiazepines in interactive mixtures. , 1998, Journal of pharmaceutical sciences.

[35]  H. Larhrib,et al.  Compression of thermally treated Polyethylene glycol 10,000 , 1997 .

[36]  A. Fassihi Mechanisms of disintegration and compactibility of disintegrants in a direct compression system , 1986 .

[37]  Genichii Taguchi,et al.  Introduction to quality engineering. designing quality into products a , 1986 .

[38]  A. P. Ball,et al.  Oral cefuroxime axetil: clinical pharmacology and comparative dose studies in urinary tract infection. , 1985, The Journal of antimicrobial chemotherapy.

[39]  Alexander T. Florence,et al.  Surfactant Systems: Their chemistry, pharmacy and biology , 1983 .

[40]  N. Pilpel,et al.  Formulation factors affecting strength and dissolution of uncoated oxytetracycline tablets. , 1977, Journal of pharmaceutical sciences.

[41]  L. Augsburger,et al.  Flexure test for determination of tablet tensile strength. , 1974, Journal of pharmaceutical sciences.

[42]  J. Newton,et al.  Determination of tablet strength by the diametral-compression test. , 1970, Journal of pharmaceutical sciences.

[43]  A. Aguiar,et al.  Deaggregation behavior of a relatively insoluble substituted benzoic acid and its sodium salt. , 1967, Journal of pharmaceutical sciences.

[44]  Linda M. Katz,et al.  Nanotechnology and applications in cosmetics : General overview , 2007 .

[45]  Franz Konstantin Fuss,et al.  Application of Taguchi method in optimization of cervical ring cage. , 2007, Journal of biomechanics.

[46]  G. Alderborn Tablets and compaction , 2007 .

[47]  Christos Reppas,et al.  Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms , 2004, Pharmaceutical Research.

[48]  Robert A. Reed,et al.  Acceptable Analytical Practices for Dissolution Testing of Poorly Soluble Compounds , 2004 .

[49]  M. H. El-Shabouri Nanoparticles for improving the dissolution and oral bioavailability of spironolactone, a poorly-soluble drug , 2002 .

[50]  I. Kanfer Report on the International Workshop on the Biopharmaceutics Classification System (BCS): scientific and regulatory aspects in practice. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[51]  Giovanni Filippo Palmieri,et al.  Evaluation of Ethylcellulose-Coated Pellets Optimized Using the Approach of Taguchi , 1997 .

[52]  A. Stamm,et al.  Tablet Formulation : Genichi Taguchi's Approach , 1993 .

[53]  R. Dempski,et al.  Simultaneous Optimization of Capsule and Tablet Formulation Using Response Surface Methodology , 1993 .

[54]  P. Rue,et al.  Work Required to Cause Failure of Tablets in Diametral Compression , 1978 .