Learning Functions of Few Arbitrary Linear Parameters in High Dimensions
暂无分享,去创建一个
[1] F. R. Gantmakher. The Theory of Matrices , 1984 .
[2] W. Rudin. Function Theory in the Unit Ball of Cn , 1980 .
[3] R. DeVore,et al. Approximation of Functions of Few Variables in High Dimensions , 2011 .
[4] Aswin C. Sankaranarayanan,et al. Compressive Sensing , 2008, Computer Vision, A Reference Guide.
[5] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[6] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[7] J. Tropp. User-Friendly Tail Bounds for Matrix Martingales , 2011 .
[8] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[9] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[10] Yonina C. Eldar,et al. Noise Folding in Compressed Sensing , 2011, IEEE Signal Processing Letters.
[11] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[12] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[13] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[14] I. Daubechies,et al. Capturing Ridge Functions in High Dimensions from Point Queries , 2012 .
[15] P. Wojtaszczyk,et al. Complexity of approximation of functions of few variables in high dimensions , 2011, J. Complex..
[16] Allan Pinkus,et al. Approximation theory of the MLP model in neural networks , 1999, Acta Numerica.
[17] F. John. Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .
[18] R. DeVore,et al. Instance-optimality in probability with an ℓ1-minimization decoder , 2009 .
[19] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[20] Babak Hassibi,et al. A simplified approach to recovery conditions for low rank matrices , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[21] Massimo Fornasier,et al. Numerical Methods for Sparse Recovery , 2010 .
[22] R. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson , 2010, 1004.3821.
[23] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[24] P. Wojtaszczyk. ` 1 minimisation with noisy data , 2011 .
[25] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[26] P. Wojtaszczyk. 1 Minimization with Noisy Data , 2012, SIAM J. Numer. Anal..
[27] S. Foucart. A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .
[28] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[29] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[30] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[31] Jan Vybíral,et al. Compressed learning of high-dimensional sparse functions , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[32] Massimo Fornasier,et al. Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.
[33] G. Stewart. Perturbation theory for the singular value decomposition , 1990 .
[34] E. Candès. Harmonic Analysis of Neural Networks , 1999 .
[35] Peter Lancaster,et al. The theory of matrices , 1969 .
[36] E. Candès. Ridgelets: estimating with ridge functions , 2003 .
[37] R. DeVore,et al. Compressed sensing and best k-term approximation , 2008 .
[38] B. Logan,et al. Optimal reconstruction of a function from its projections , 1975 .
[39] M. Ledoux. The concentration of measure phenomenon , 2001 .
[40] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[41] Henryk Wozniakowski,et al. Approximation of infinitely differentiable multivariate functions is intractable , 2009, J. Complex..
[42] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[43] D. Freedman,et al. A dozen de Finetti-style results in search of a theory , 1987 .
[44] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..