Additive conserved quantities in discrete-time lattice dynamical systems
暂无分享,去创建一个
[1] Y. Pomeau,et al. Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions , 1973 .
[2] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[3] Y. Pomeau. Invariant in cellular automata , 1984 .
[4] Tommaso Toffoli,et al. Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .
[5] N. Margolus. Physics-like models of computation☆ , 1984 .
[6] G. Vichniac. Simulating physics with cellular automata , 1984 .
[7] Y. Pomeau,et al. Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.
[8] M. Creutz. Deterministic Ising dynamics , 1986 .
[9] Takesue. Reversible cellular automata and statistical mechanics. , 1987, Physical review letters.
[10] Shinji Takesue,et al. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties , 1989 .
[11] S. Takesue. Relaxation properties of elementary reversible cellular automata , 1990 .
[12] Takesue. Fourier's law and the Green-Kubo formula in a cellular-automaton model. , 1990, Physical Review Letters.