Optimal Conductor Size Selection in Radial Power Distribution Systems Using Evolutionary Strategies

This paper presents the application of a heuristic method, called evolutionary strategy (ES), to select optimal size of feeders in radial power distribution systems. ES incorporates biologically inspired structures and operators such as recombination, mutation and fitness based selection. ES prove to be successful when compared with other iterative methods on most problems. In this paper, the posed optimization problem consists in select a conductor type for each feeder of radial power distribution systems. The optimization procedure is subject to some technical constraints, which are the Kirchhoff's current law constraints for all the nodes, the capacity constraints for the feeders and substations, and the voltage drop constraints. As a case study, the proposed method is applied to radial power distribution systems with satisfactory results

[1]  E. J. Holmes,et al.  Electricity Distribution Network Design , 1989 .

[2]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[3]  J. F. Verstege,et al.  An evolution strategy based approach for a congestion management system , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[4]  Thomas Bäck,et al.  Evolutionary computation: an overview , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[6]  A. Pahwa,et al.  Optimal Selection of Conductors for Distribution Feeders , 2002, IEEE Power Engineering Review.

[7]  H. N. Tram,et al.  Optimal conductor selection in planning radial distribution systems , 1988 .

[8]  Xiaohui Wang,et al.  A practical approach to the conductor size selection in planning radial distribution systems , 2000 .

[9]  M. Yehia,et al.  A Heuristic Algorithm for Electric Distribution Networks Optimal Feeder Configuration Using Geographic Information System , 2002, IEEE Power Engineering Review.

[10]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[11]  E. Miguez,et al.  Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage , 2002 .

[12]  Bala Venkatesh,et al.  A new algorithm for power distribution system planning , 2002 .