A multi-scale approach to model localized failure with softening

Highlights? What is proposed: multi-scale analysis of heterogeneous structures. ? Main novelty: can model localized failure with softening. ? Main advantage: proposed method can fit within the standard FE code architecture. ? Key idea: replace the standard computation of the element tangent stiffness. We present a computational strategy for strongly coupled multi-scale analysis of heterogeneous material undergoing localized failure with softening. The proposed method can nicely fit within the standard architecture of finite element codes, with the key idea to replace the standard computation of the element tangent stiffness matrices and the residual vectors by an assembly of micro-scale computations whose contributions are statically condensed at the coarser level. The micro-scale elements act as local kinematic enrichments which allow us to deal with localized failure mechanism in essentially the same manner as the classical embedded discontinuity element enhancement, with the benefit of accounting for true microstructure of heterogeneous material with softening behavior. The proposed multi-scale solution strategy also incorporates a cylindrical arc-length procedure at the micro level which allows the softening phenomena to be handled. Some numerical examples dealing with localized failure of heterogeneous materials are presented in order to illustrate very satisfying performance of the proposed methodology.

[1]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[2]  Adnan Ibrahimbegovic,et al.  Performance of time‐stepping schemes for discrete models in fracture dynamic analysis , 2006 .

[3]  M. A. Crisfield,et al.  A new arc-length method for handling sharp snap-backs , 1998 .

[4]  C. Felippa Parametrized multifield variational principles in elasticity: II. Hybrid functionals and the free formulation , 1989 .

[5]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[6]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[7]  Hermann G. Matthies,et al.  Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples , 2011 .

[8]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[9]  Rainer Niekamp,et al.  An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations , 2002 .

[10]  Robert L. Taylor,et al.  On the role of frame-invariance in structural mechanics models at finite rotations , 2002 .

[11]  Karam Sab,et al.  Aggregate composites: a contact based modeling , 2005 .

[12]  C. Felippa,et al.  A Variational Framework for Solution Method Developments in Structural Mechanics , 1998 .

[13]  T. Bretheau,et al.  Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques , 2001 .

[14]  P. Badel,et al.  A new path‐following constraint for strain‐softening finite element simulations , 2004 .

[15]  Cv Clemens Verhoosel,et al.  A dissipation‐based arc‐length method for robust simulation of brittle and ductile failure , 2009 .

[16]  Adnan Ibrahimbegovic,et al.  Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method , 2007 .

[17]  Damijan Markovic,et al.  Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures , 2003 .

[18]  Damijan Markovic,et al.  On micro–macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials , 2004 .

[19]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[20]  Jean-Marie,et al.  Mechanical Behavior of Concrete (Torrenti/Mechanical Behavior of Concrete) || Index , 2013 .

[21]  Peter Wriggers,et al.  A method of substructuring large-scale computational micromechanical problems , 2001 .

[22]  Frédéric Feyel,et al.  Multi-scale non-linear FE2 analysis of composite structures: damage and fiber size effects , 2001 .

[23]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[24]  Adnan Ibrahimbegovic,et al.  Failure of heterogeneous materials: 3D meso‐scale FE models with embedded discontinuities , 2010 .

[25]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[26]  Adnan Ibrahimbegovic,et al.  Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material , 2003 .

[27]  Sergiy Melnyk,et al.  Failure model for heterogeneous structures using structured meshes and accounting for probability aspects , 2009 .

[28]  Gilles Pijaudier-Cabot,et al.  Mechanical behavior of concrete , 2010 .

[29]  Hermann G. Matthies,et al.  Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples , 2011 .

[30]  R. Penrose A Generalized inverse for matrices , 1955 .

[31]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[32]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[33]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[34]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[35]  Hermann G. Matthies,et al.  Multi‐scale modelling of heterogeneous structures with inelastic constitutive behavior: Part II – software coupling implementation aspects , 2009 .

[36]  Thomas J. R. Hughes,et al.  Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis , 1978 .

[37]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[38]  M. Geradin,et al.  B.M. Fraeijs de Veubeke Memorial Volume of Selected Papers , 1980 .

[39]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[40]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[41]  W. Wunderlich Nonlinear Finite Element Analysis in Structural Mechanics , 1981 .

[42]  R. Taylor The Finite Element Method, the Basis , 2000 .

[43]  K. Scrivener,et al.  The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete , 2004 .

[44]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[45]  Carlos A. Felippa,et al.  An algebraically partitioned FETI method for parallel structural analysis: algorithm description , 1997 .

[46]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[47]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .