Natural Walking in Virtual Reality

Recent technological developments have finally brought virtual reality (VR) out of the laboratory and into the hands of developers and consumers. However, a number of challenges remain. Virtual travel is one of the most common and universal tasks performed inside virtual environments, yet enabling users to navigate virtual environments is not a trivial challenge—especially if the user is walking. In this article, we initially provide an overview of the numerous virtual travel techniques that have been proposed prior to the commercialization of VR. Then we turn to the mode of travel that is the most difficult to facilitate, that is, walking. The challenge of providing users with natural walking experiences in VR can be divided into two separate, albeit related, challenges: (1) enabling unconstrained walking in virtual worlds that are larger than the tracked physical space and (2) providing users with appropriate multisensory stimuli in response to their interaction with the virtual environment. In regard to the first challenge, we present walking techniques falling into three general categories: repositioning systems, locomotion based on proxy gestures, and redirected walking. With respect to multimodal stimuli, we focus on how to provide three types of information: external sensory information (visual, auditory, and cutaneous), internal sensory information (vestibular and kinesthetic/proprioceptive), and efferent information. Finally, we discuss how the different categories of walking techniques compare and discuss the challenges still facing the research community.

[1]  Béat Hirsbrunner,et al.  Active Walking Interface for Human-Scale Virtual Environment , 2005 .

[2]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[3]  Mark Bolas,et al.  Redirection on Mixed Reality Walking Surfaces , 2011 .

[4]  Alexandru Dancu,et al.  The Ultimate Display , 2014 .

[5]  Evan Suma Rosenberg,et al.  An evaluation of strategies for two-user redirected walking in shared physical spaces , 2017, 2017 IEEE Virtual Reality (VR).

[6]  Betsy Williams Sanders,et al.  VR locomotion: walking > walking in place > arm swinging , 2016, VRCAI.

[7]  H. Noma,et al.  Design for Locomotion Interface in a Large Scale Virtual Environment ATLAS: ATR Locomotion Interface for Active Self Motion , 1998, Dynamic Systems and Control.

[8]  Hannes Kaufmann,et al.  Flexible spaces: Dynamic layout generation for infinite walking in virtual environments , 2013, 2013 IEEE Symposium on 3D User Interfaces (3DUI).

[9]  Maud Marchal,et al.  Multimodal Rendering of Walking Over Virtual Grounds , 2013 .

[10]  Joaquim A. Jorge,et al.  A New Approach to Walking in Place , 2013, INTERACT.

[11]  Uwe Kloos,et al.  Velocity-dependent dynamic curvature gain for redirected walking , 2011, 2011 IEEE Virtual Reality Conference.

[12]  Thies Pfeiffer,et al.  Detecting movement patterns from inertial data of a mobile head-mounted-display for navigation via walking-in-place , 2016, 2016 IEEE Virtual Reality (VR).

[13]  D. Waller,et al.  Sensory Contributions to Spatial Knowledge of Real and Virtual Environments , 2013 .

[14]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[15]  Mary C. Whitton,et al.  Matching actual treadmill walking speed and visually perceived walking speed in a projection virtual environment , 2010, APGV '10.

[16]  Rik Warren,et al.  Perception and Control of Self-motion , 2014 .

[17]  Mel Slater,et al.  Taking steps: the influence of a walking technique on presence in virtual reality , 1995, TCHI.

[18]  Roy Ruddle Review: 3D User Interfaces: Theory and Practice Doug A. Bowman , Ernst Kruijff , Joseph J. LaViola Jr. , Ivan Poupyrev , 2005 .

[19]  Wolfgang Fohl,et al.  Acoustic redirected walking with auditory cues by means of wave field synthesis , 2016, 2016 IEEE Virtual Reality (VR).

[20]  D. Cook,et al.  Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions , 1997, Annals of Internal Medicine.

[21]  Hiroo Iwata,et al.  CirculaFloor [locomotion interface] , 2005, IEEE Computer Graphics and Applications.

[22]  Rolf Nordahl Increasing the Motion of Users in Photo-realistic Virtual Environments by Utilising Auditory Rendering of the Environment and Ego-motion , 2006 .

[23]  Hiroo Iwata,et al.  Virtual perambulator: a novel interface device for locomotion in virtual environment , 1996, Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium.

[24]  Mary C. Whitton,et al.  LLCM-WIP: Low-Latency, Continuous-Motion Walking-in-Place , 2008, 2008 IEEE Symposium on 3D User Interfaces.

[25]  Michael A. Zmuda,et al.  Collision prediction and prevention in a simultaneous two-user immersive virtual environment , 2013, 2013 IEEE Virtual Reality (VR).

[26]  Mel Slater,et al.  Steps and ladders in virtual reality , 1994 .

[27]  Mel Slater,et al.  The Virtual Treadmill: A Naturalistic Metaphor for Navigation in Immersive Virtual Environments , 1995, Virtual Environments.

[28]  Mark T. Bolas,et al.  Towards context-sensitive reorientation for real walking in virtual reality , 2015, 2015 IEEE Virtual Reality (VR).

[29]  J Feasel,et al.  The Integrated Virtual Environment Rehabilitation Treadmill System , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[30]  Stefania Serafin,et al.  Estimation of detection thresholds for acoustic based redirected walking techniques , 2013, 2013 IEEE Virtual Reality (VR).

[31]  Jiung-yao Huang,et al.  An omnidirectional stroll-based virtual reality interface and its application on overhead crane training , 2003, IEEE Trans. Multim..

[32]  Rolf Nordahl Design and evaluation of a multi-modal footstep controller with VR-applications , 2005 .

[33]  Luca Turchet,et al.  Enhancing realism in virtual environments by simulating the audio-haptic sensation of walking on ground surfaces , 2012, 2012 IEEE Virtual Reality Workshops (VRW).

[34]  Laura K. Pynn,et al.  The function of efference copy signals: Implications for symptoms of schizophrenia , 2013, Vision Research.

[35]  Bernhard E. Riecke,et al.  Upper Body Leaning can affect Forward Self-Motion Perception in Virtual Environments , 2015, SUI.

[36]  Michael Meehan,et al.  Physiological measures of presence in stressful virtual environments , 2002, SIGGRAPH.

[37]  Makoto Sato,et al.  Virtual Locomotion Interface with Ground Surface Simulation , 2003, ICAT.

[38]  Mel Slater,et al.  Body Centred Interaction in Immersive Virtual Environments , 1994 .

[39]  Albert A. Rizzo,et al.  FAAST: The Flexible Action and Articulated Skeleton Toolkit , 2011, 2011 IEEE Virtual Reality Conference.

[40]  Kosuke Sato,et al.  Extended LazyNav: Virtual 3D Ground Navigation for Large Displays and Head-Mounted Displays , 2017, IEEE Transactions on Visualization and Computer Graphics.

[41]  Julian Williams,et al.  The implementation of a novel walking interface within an immersive display , 2010, 2010 IEEE Symposium on 3D User Interfaces (3DUI).

[42]  Bruce Bridgeman,et al.  Perception & control of self-motion , 1991 .

[43]  Mark Bolas,et al.  Redirected Walking in Mixed Reality Training Applications , 2013 .

[44]  Mark T. Bolas,et al.  Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture , 2012, IEEE Transactions on Visualization and Computer Graphics.

[45]  Eric D. Ragan,et al.  Questioning naturalism in 3D user interfaces , 2012, CACM.

[46]  Luca Turchet,et al.  A multimodal architecture for simulating natural interactive walking in virtual environments , 2011, PsychNology J..

[47]  Markus Lappe,et al.  Subliminal Reorientation and Repositioning in Immersive Virtual Environments using Saccadic Suppression , 2015, IEEE Transactions on Visualization and Computer Graphics.

[48]  Doug A. Bowman,et al.  Maintaining Spatial Orientation during Travel in an Immersive Virtual Environment , 1999, Presence.

[49]  Luca Turchet,et al.  Extraction of ground reaction forces for real-time synthesis of walking sounds , 2009 .

[50]  Hannes Kaufmann,et al.  Compressing VR: Fitting Large Virtual Environments within Limited Physical Space , 2017, IEEE Computer Graphics and Applications.

[51]  A.W. Law,et al.  A multi-modal floor-space for experiencing material deformation underfoot in virtual reality , 2008, 2008 IEEE International Workshop on Haptic Audio visual Environments and Games.

[52]  Jacquelyn Ford Morie,et al.  When VR really hits the streets , 2014, Electronic Imaging.

[53]  Gerd Bruder,et al.  Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR , 2017, IEEE Transactions on Visualization and Computer Graphics.

[54]  Suzanne Weghorst,et al.  Virtusphere: Walking in a Human Size VR “Hamster Ball” , 2008 .

[55]  Hiroo Iwata,et al.  String walker , 2007, SIGGRAPH '07.

[56]  Gabriel Robles-De-La-Torre,et al.  The importance of the sense of touch in virtual and real environments , 2006, IEEE MultiMedia.

[57]  Robert W. Lindeman,et al.  On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli , 2016, SUI.

[58]  Eelke Folmer,et al.  VR-STEP: Walking-in-Place using Inertial Sensing for Hands Free Navigation in Mobile VR Environments , 2016, CHI.

[59]  Bernhard E. Riecke,et al.  Comparing leaning-based motion cueing interfaces for virtual reality locomotion , 2017, 2017 IEEE Symposium on 3D User Interfaces (3DUI).

[60]  Hiroo Iwata,et al.  CirculaFloor , 2005, IEEE Computer Graphics and Applications.

[61]  Federico Fontana,et al.  Physics-based sound synthesis and control: crushing, walking and running by crumpling sounds , 2003 .

[62]  Mendel Kleiner,et al.  Auditory-Induced Presence in Mixed Reality Environments and Related Technology , 2010, The Engineering of Mixed Reality Systems.

[63]  Sharif Razzaque,et al.  Chapter 4 – Locomotion Interfaces , 2008 .

[64]  Kosuke Sato,et al.  LazyNav: 3D ground navigation with non-critical body parts , 2015, 2015 IEEE Symposium on 3D User Interfaces (3DUI).

[65]  Jeremy R. Cooperstock,et al.  Multimodal floor for immersive environments , 2009, SIGGRAPH '09.

[66]  Vincent Hayward,et al.  Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis , 2010, EuroHaptics.

[67]  Gerd Bruder,et al.  Cognitive Resource Demands of Redirected Walking , 2015, IEEE Transactions on Visualization and Computer Graphics.

[68]  Heinrich H. Bülthoff,et al.  Scene consistency and spatial presence increase the sensation of self-motion in virtual reality , 2005, APGV '05.

[69]  Ivan Poupyrev,et al.  3D User Interfaces: Theory and Practice , 2004 .

[70]  Victoria Interrante,et al.  Seven League Boots: A New Metaphor for Augmented Locomotion through Moderately Large Scale Immersive Virtual Environments , 2007, 2007 IEEE Symposium on 3D User Interfaces.

[71]  Robert W. Lindeman,et al.  Hand-held windows: towards effective 2D interaction in immersive virtual environments , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[72]  B. Stevens,et al.  Blurring the boundaries: the perception of visual gain in treadmill-mediated virtual environments , 2011 .

[73]  Stefania Serafin,et al.  Sound design and perception in walking interactions , 2009, Int. J. Hum. Comput. Stud..

[74]  Stefano Papetti,et al.  A shoe-based interface for ecological ground augmentation , 2009 .

[75]  Dirk Wenig,et al.  Suspended Walking: A Physical Locomotion Interface for Virtual Reality , 2013, ICEC.

[76]  Stefania Serafin,et al.  The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds , 2015, 2015 IEEE Virtual Reality (VR).

[77]  M. Brainin Cognition , 1999, Journal of the Neurological Sciences.

[78]  Mark T. Bolas,et al.  Making small spaces feel large: infinite walking in virtual reality , 2015, SIGGRAPH Emerging Technologies.

[79]  Stefania Serafin,et al.  The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion , 2014, VRST '14.

[80]  Patricia S. Denbrook,et al.  Virtual Locomotion: Walking in Place through Virtual Environments , 1999, Presence.

[81]  Zhixin Yan A Unified Multi-touch Gesture based Approach for Efficient Short-, Medium-, and Long-Distance Travel in VR , 2016 .

[82]  Hiroo Iwata,et al.  The Torus Treadmill: Realizing Locomotion in VEs , 1999, IEEE Computer Graphics and Applications.

[83]  Frank Steinicke,et al.  Human Walking in Virtual Environments: Perception, Technology, and Applications , 2013 .

[84]  Betsy Williams Sanders,et al.  Myo arm: swinging to explore a VE , 2015, SAP.

[85]  Zachary Wartell,et al.  Leveraging change blindness for redirection in virtual environments , 2011, 2011 IEEE Virtual Reality Conference.

[86]  Maud Marchal,et al.  Shake-your-head: revisiting walking-in-place for desktop virtual reality , 2010, VRST '10.

[87]  Alessandro De Luca,et al.  CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments , 2008, ACM Trans. Appl. Percept..

[88]  A. Väljamäe Auditorily-induced illusory self-motion: A review , 2009, Brain Research Reviews.

[89]  E. Paul Zehr,et al.  Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements , 2003, Experimental Brain Research.

[90]  Stefania Serafin,et al.  Establishing the Range of Perceptually Natural Visual Walking Speeds for Virtual Walking-In-Place Locomotion , 2014, IEEE Transactions on Visualization and Computer Graphics.

[91]  Frank H. Durgin,et al.  Step frequency and perceived self-motion , 2007, TAP.

[92]  Stefania Serafin,et al.  The Perceived Naturalness of Virtual Walking Speeds during WIP locomotion: Summary and Meta-Analyses , 2016, PsychNology J..

[93]  Stefania Serafin,et al.  Estimation of detection thresholds for audiovisual rotation gains , 2016, 2016 IEEE Virtual Reality (VR).

[94]  Luca Turchet,et al.  Sound Synthesis and Evaluation of Interactive Footsteps and Environmental Sounds Rendering for Virtual Reality Applications , 2011, IEEE Transactions on Visualization and Computer Graphics.

[95]  Mary C. Whitton,et al.  GUD WIP: Gait-Understanding-Driven Walking-In-Place , 2010, 2010 IEEE Virtual Reality Conference (VR).

[96]  Mike Bailey,et al.  Virtual Reality for the Masses , 2014, IEEE Computer Graphics and Applications.

[97]  Hans-Werner Gellersen,et al.  Substitutional Reality: Using the Physical Environment to Design Virtual Reality Experiences , 2015, CHI.

[98]  Behrang Keshavarz,et al.  Illusory Self-Motion in Virtual Environments , 2014, Handbook of Virtual Environments, 2nd ed..

[99]  Simon Davis,et al.  A Systematic Review of Cybersickness , 2014, IE.

[100]  Stefania Serafin,et al.  The effect of visual display properties and gain presentation mode on the perceived naturalness of virtual walking speeds , 2015, 2015 IEEE Virtual Reality (VR).

[101]  Mary C. Whitton,et al.  An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces , 2011, 2011 IEEE Virtual Reality Conference.

[102]  Frederick P. Brooks,et al.  Real-walking models improve walking-in-place systems , 2010 .

[103]  Cagatay Basdogan,et al.  Haptics in virtual environments: taxonomy, research status, and challenges , 1997, Comput. Graph..

[104]  Ryan P. McMahan,et al.  Shadow walking: An unencumbered locomotion technique for systems with under-floor projection , 2011, 2011 IEEE Virtual Reality Conference.

[105]  Gerd Bruder,et al.  Subliminal Reorientation and Repositioning in Virtual Reality During Eye Blinks , 2016, SUI.

[106]  Mark T. Bolas,et al.  Revisiting detection thresholds for redirected walking: combining translation and curvature gains , 2016, SAP.

[107]  Doug A. Bowman,et al.  Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques , 1997, Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality.

[108]  Perry R. Cook,et al.  Physically Informed Sonic Modeling (PhISM): Synthesis of percussive sounds , 1997 .

[109]  Tuncay Cakmak,et al.  Cyberith virtualizer: a locomotion device for virtual reality , 2014, SIGGRAPH '14.

[110]  Timothy P. McNamara,et al.  Exploring large virtual environments with an HMD when physical space is limited , 2007, APGV.

[111]  Stefania Serafin,et al.  Tapping-In-Place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input , 2013, 2013 IEEE Symposium on 3D User Interfaces (3DUI).

[112]  Andreas M. Kunz,et al.  Planning redirection techniques for optimal free walking experience using model predictive control , 2014, 2014 IEEE Symposium on 3D User Interfaces (3DUI).

[113]  Steven K. Feiner,et al.  Combating VR sickness through subtle dynamic field-of-view modification , 2016, 2016 IEEE Symposium on 3D User Interfaces (3DUI).

[114]  P. M. Jaekl,et al.  Simulating Self-Motion I: Cues for the Perception of Motion , 2002, Virtual Reality.

[115]  Takuji Narumi,et al.  Curvature manipulation techniques in redirection using haptic cues , 2016, 2016 IEEE Symposium on 3D User Interfaces (3DUI).

[116]  Eric R. Bachmann,et al.  Comparing Four Approaches to Generalized Redirected Walking: Simulation and Live User Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[117]  Perry R. Cook,et al.  Modeling Bill's Gait: Analysis and Parametric Synthesis of Walking Sounds , 2002 .

[118]  Sharif Razzaque,et al.  Redirected Walking , 2001, Eurographics.

[119]  Rudy Darken,et al.  The omni-directional treadmill: a locomotion device for virtual worlds , 1997, UIST '97.

[120]  Stefania Serafin,et al.  The Perceived Naturalness of Virtual Locomotion Methods Devoid of Explicit Leg Movements , 2013, MIG.

[121]  Betsy Williams Sanders,et al.  Evaluation of walking in place on a Wii balance board to explore a virtual environment , 2011, TAP.

[122]  Thomas Banton,et al.  The Perception of Walking Speed in a Virtual Environment , 2005, Presence: Teleoperators & Virtual Environments.

[123]  Gerd Bruder,et al.  Estimation of Detection Thresholds for Redirected Walking Techniques , 2010, IEEE Transactions on Visualization and Computer Graphics.

[124]  Paul Richard,et al.  Enactive Navigation in Virtual Environments: Evaluation of the Walking PAD , 2007 .

[125]  Sergio Garrido-Jurado,et al.  Procedurally generated virtual reality from 3D reconstructed physical space , 2016, VRST.

[126]  Stefania Serafin,et al.  Walking in Place Through Virtual Worlds , 2016, HCI.

[127]  Gerd Bruder,et al.  A taxonomy for deploying redirection techniques in immersive virtual environments , 2012, 2012 IEEE Virtual Reality Workshops (VRW).

[128]  Mary C. Whitton,et al.  Walking > walking-in-place > flying, in virtual environments , 1999, SIGGRAPH.

[129]  Robert W. Lindeman,et al.  Trigger Walking: A low-fatigue travel technique for immersive virtual reality , 2017, 2017 IEEE Symposium on 3D User Interfaces (3DUI).

[130]  E. Langbehn,et al.  Evaluation of an Omnidirectional Walking-in-Place User Interface with Virtual Locomotion Speed Scaled by Forward Leaning Angle , 2015 .

[131]  Hannes Kaufmann,et al.  Towards efficient spatial compression in self-overlapping virtual environments , 2017, 2017 IEEE Symposium on 3D User Interfaces (3DUI).