Modelling the dependence structure of financial assets : A survey of four copulas

Understanding and quantifying dependence is at the core of all modelling efforts in financial econometrics. The linear correlation coefficient, which is the far most used measure to test dependence in the financial community and also elsewhere, is only a measure of linear dependence. This means that it is a meaningful measure of dependence if asset returns are well represented by an elliptical distribution. Outside the world of elliptical distributions, however, using the linear correlation coefficient as a measure of dependence may lead to misleading conclusions. Hence, alternative methods for capturing co-dependency should be considered. One class of alternatives are copula-based dependence measures. In this survey we consider two parametric families of copulas; the copulas of normal mixture distributions and Archimedean copulas.

[1]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[2]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[3]  P. Embrechts,et al.  Correlation: Pitfalls and Alternatives , 1999 .

[4]  Geert Molenberghs,et al.  Transformation of non positive semidefinite correlation matrices , 1993 .

[5]  Peter Blum,et al.  The Art of Dependence Modelling: The Latest Advances in Correlation Analysis , 2001 .

[6]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[7]  A. Zeevi,et al.  Beyond Correlation: Extreme Co-Movements between Financial Assets , 2002 .

[8]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[9]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[10]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[11]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[12]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[13]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[14]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[15]  P. Embrechts,et al.  Correlation and Dependency in Risk Management , 2002 .

[16]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[17]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[18]  R. Rebonato,et al.  The Most General Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes , 2011 .