Suboptimal FIR Filtering of Nonlinear Models in Additive White Gaussian Noise

The first- and second-order extended finite impulse response (EFIR1 and EFIR2, respectively) filters are addressed for suboptimal estimation of nonlinear discrete-time state-space models with additive white Gaussian noise. It is shown that, unlike the extended Kalman filter (EKF) and EFIR2 filter, the EFIR1 one does not require noise statistics and initial errors. Only within a narrow region around actual noise covariances, EFIR filters fall a bit short of EKF and they demonstrate better performance otherwise. It is shown that the optimal averaging interval for EFIR filters can be determined via measurement without a reference model in a learning cycle. We also notice that the second-order approximation can improve the local performance, but it can also deteriorate it. We thus have no recommendations about its use, at least for tracking considered as an example of applications.

[1]  Yuriy S. Shmaliy,et al.  Optimal horizons for a one-parameter family of unbiased FIR filters , 2008, Digit. Signal Process..

[2]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[3]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[4]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[5]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[6]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[7]  Abderrahmane Haddad,et al.  Estimation theory with applications to communications and control , 1972 .

[8]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[9]  Jwu-Sheng Hu,et al.  Second-Order Extended $H_{\infty}$ Filter for Nonlinear Discrete-Time Systems Using Quadratic Error Matrix Approximation , 2011, IEEE Transactions on Signal Processing.

[10]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[11]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[12]  B. Martin PARAMETER ESTIMATION , 2012, Statistical Methods for Biomedical Research.

[13]  W. Kwon,et al.  Equivalence of finite memory filters , 1994 .

[14]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[15]  Alfred M. Bruckstein,et al.  Recursive limited memory filtering and scattering theory , 1985, IEEE Trans. Inf. Theory.

[16]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[17]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[18]  Yuriy S. Shmaliy,et al.  Time‐variant linear optimal finite impulse response estimator for discrete state‐space models , 2012 .

[19]  G. J. Bierman Fixed memory least squares filtering , 1975 .

[20]  Yuriy S. Shmaliy,et al.  Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models , 2010, IEEE Transactions on Signal Processing.

[21]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[22]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[23]  Jan R. Magnus,et al.  The expectation of products of quadratic forms in normal variables: The practice Statistica Neerlandica , 1979 .

[24]  Gerald J. Bierman Fixed memory least squares filtering (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[25]  Yuriy S. Shmaliy,et al.  An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions , 2011, IEEE Transactions on Signal Processing.