Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications.

The connections of the middle temporal area (MT) were investigated in the marmoset, one of the smallest primates. Reflecting the predictions of studies that modeled cortical allometric growth and development, we found that in adult marmosets MT is connected to a more extensive network of cortical areas than in larger primates, including consistent connections with retrosplenial, cingulate, and parahippocampal areas and more widespread connections with temporal, frontal, and parietal areas. Quantitative analyses reveal that MT receives the majority of its afferents from other motion-sensitive areas in the temporal lobe and from the occipitoparietal transition areas, each of these regions containing approximately 30% of the projecting cells. Projections from the primary visual area (V1) and the second visual area (V2) account for approximately 20% of projecting neurons, whereas "ventral stream" and higher-order association areas form quantitatively minor projections. A relationship exists between the percentage of supragranular layer neurons forming the projections from different areas and their putative hierarchical rank. However, this relationship is clearer for projections from ventral stream areas than it is for projections from dorsal stream or frontal areas. These results provide the first quantitative data on the connections of MT and extend current understanding of the relationship between cortical anatomy and function in evolution.

[1]  R Gattass,et al.  Identification and viuotopic organization of areas PO and POd in Cebus monkey , 1994, The Journal of comparative neurology.

[2]  R B Masterton,et al.  Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract , 1990, The Journal of comparative neurology.

[3]  G. Striedter Principles of brain evolution. , 2005 .

[4]  Leo L. Lui,et al.  Single-unit responses to kinetic stimuli in New World monkey area V2: Physiological characteristics of cue-invariant neurones , 2005, Experimental Brain Research.

[5]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[7]  Marcello G P Rosa,et al.  Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). , 2003, Brain research. Brain research protocols.

[8]  T. Insel,et al.  Differential expansion of neural projection systems in primate brain evolution. , 1999, Neuroreport.

[9]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Mark A. Changizi,et al.  Principles underlying mammalian neocortical scaling , 2001, Biological Cybernetics.

[11]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[12]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[13]  R Gattass,et al.  Area V4 in Cebus monkey: extent and visuotopic organization. , 1998, Cerebral cortex.

[14]  T. Deacon Problems of ontogeny and phylogeny in brain-size evolution , 1990, International Journal of Primatology.

[15]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[18]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[19]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[20]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[21]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[22]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[23]  L. Sternberger,et al.  Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[25]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[26]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[27]  L. Schmued A rapid, sensitive histochemical stain for myelin in frozen brain sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[28]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[29]  R. Weller,et al.  Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys , 1992, The Journal of comparative neurology.

[30]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[31]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[32]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[33]  S. Shimojo,et al.  Parcellation and Area-Area Connectivity as a Function of Neocortex Size , 2005, Brain, Behavior and Evolution.

[34]  J L Ringo,et al.  Neuronal interconnection as a function of brain size. , 1991, Brain, behavior and evolution.

[35]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[36]  M. Rosa,et al.  Maps of the visual field in the cerebral cortex of primates: Functional organisation and significance , 2004 .

[37]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[38]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[39]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[40]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[41]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[42]  Leah Krubitzer,et al.  The organization and connections of anterior and posterior parietal cortex in titi monkeys: do New World monkeys have an area 2? , 2005, Cerebral cortex.

[43]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[44]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[45]  J. Tigges,et al.  Experimental‐anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico‐cortical connections in the marmoset Callithrix jacchus , 1972, The Journal of comparative neurology.

[46]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[47]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[48]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[49]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[51]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[52]  Claus C Hilgetag,et al.  Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex , 2005, The European journal of neuroscience.

[53]  R E Weller,et al.  Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys , 1991, The Journal of comparative neurology.

[54]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[55]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[56]  J. Kaas,et al.  The Primate visual system , 2003 .

[57]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[58]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[59]  Claire E Warner,et al.  Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry. , 2005, Cerebral cortex.

[60]  W. B. Spatz Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus , 1977, Experimental Brain Research.

[61]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[62]  J. Lund,et al.  The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. , 1996, Brain research. Developmental brain research.

[63]  Song-Lin Ding,et al.  Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey , 2003, The Journal of comparative neurology.

[64]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[65]  S. Zeki,et al.  A visuo‐somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A , 1998, The European journal of neuroscience.

[66]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[67]  Ricardo Gattass,et al.  Third tier ventral extrastriate cortex in the New World monkey, Cebus apella , 2000, Experimental Brain Research.

[68]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[69]  M. Rosa Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[70]  Timothy Edward John Behrens,et al.  The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. , 2006, Cerebral cortex.

[71]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[72]  M. Rosa,et al.  CLARIFYING HOMOLOGIES IN THE MAMMALIAN CEREBRAL CORTEX: THE CASE OF THE THIRD VISUAL AREA (V3) , 2005, Clinical and experimental pharmacology & physiology.

[73]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[74]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[75]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[76]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[77]  M G Rosa,et al.  The dorsomedial visual areas in New World and Old World monkeys: homology and function , 2001, The European journal of neuroscience.

[78]  Georg F. Striedter,et al.  CHAPTER 1 – Brain Evolution , 2004 .

[79]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[80]  A. Schleicher,et al.  The size of the middle temporal area in primates. , 1998, Journal fur Hirnforschung.