Models of First-Passage Percolation

First-passage percolation (FPP) was introduced by Hammersley and Welsh in 1965 (see [26]) as a model of fluid flow through a randomly porous material. Envision a fluid injected into the material at a fixed site: as time elapses, the portion of the material that is wet expands in a manner that is a complicated function of the material’s random structure. In the standard FPP model, the spatial randomness of the material is represented by a family of non-negative i.i.d. random variables indexed by the nearest neighbor edges of the Z d lattice. (We take d ≥ 2 throughout this chapter.) If edge e has endpoints u, v ∈ Z d (so |u − v| = 1, where | · | denotes the usual Euclidean norm) then the associated quantity τ(e) represents the time it takes fluid to flow from site u to site v, or the reverse, along the edge e. If the sequence of edges r = (e 1,..., e n ) forms a path from u ∈ Z d to v ∈ Z d , then T(r) ≡ ∑ i τ(e i ) represents the time it takes fluid to flow from u to v along the path r. For any u, v ∈ Z d , we further define the passage time from u to v as $$T\left( {u,v} \right) \equiv \inf \left\{ {T\left( r \right):the\,edgesinrformapathfromutov} \right\}.$$ (1.1)

[1]  Charles M. Newman,et al.  Superdiffusivity in first-passage percolation , 1996 .

[2]  J. Steele,et al.  Nondifferentiability of the Time Constants of First-Passage Percolation , 2003 .

[3]  Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation , 2001, Journal of Applied Probability.

[4]  K. Alexander A Note on Some Rates of Convergence in First-Passage Percolation , 1993 .

[5]  Svante Janson,et al.  An upper bound for the velocity of first-passage percolation , 1981, Journal of Applied Probability.

[6]  Willi Jäger,et al.  Biological Growth and Spread , 1980 .

[7]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[8]  H. Kesten On the Speed of Convergence in First-Passage Percolation , 1993 .

[9]  Tree-Indexed Processes , 1995, math/0404100.

[10]  K. Alexander,et al.  Approximation of subadditive functions and convergence rates in limiting-shape results , 1997 .

[11]  K. Johansson Transversal fluctuations for increasing subsequences on the plane , 1999, math/9910146.

[12]  J. T. Cox,et al.  Some Limit Theorems for Percolation Processes with Necessary and Sufficient Conditions , 1981 .

[13]  On the continuity of the time constant of first-passage percolation , 1981 .

[14]  H. Kesten,et al.  The tortuosity of occupied crossings of a box in critical percolation , 1993 .

[15]  R. Smythe Remarks on renewal theory for percolation processes , 1976, Journal of Applied Probability.

[16]  L. Chayes,et al.  The density of interfaces: a new first-passage problem , 1993, Journal of Applied Probability.

[17]  H. Kesten Aspects of first passage percolation , 1986 .

[18]  M. Wüthrich SUPERDIFFUSIVE BEHAVIOR OF TWO-DIMENSIONAL BROWNIAN MOTION IN A POISSONIAN POTENTIAL , 1998 .

[19]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[20]  John C. Wierman,et al.  Inequalities for Means of Restricted First-Passage Times in Percolation Theory , 1999, Combinatorics, Probability and Computing.

[21]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .

[22]  Janko Gravner,et al.  Reverse Shapes in First-Passage Percolation and Related Growth Models , 1999 .

[23]  J. Kingman,et al.  The Ergodic Theory of Subadditive Stochastic Processes , 1968 .

[24]  Sven Erick Alm A Note on a Problem by Welsh in First-Passage Percolation , 1998, Comb. Probab. Comput..

[25]  Yuval Peres,et al.  Tree-indexed random walks on groups and first passage percolation , 1994 .

[26]  Double Behavior of Critical First-Passage Percolation , 1999 .

[27]  J. T. Cox,et al.  The time constant of first-passage percolation on the square lattice , 1980, Advances in Applied Probability.

[28]  Charles M. Newman,et al.  A Surface View of First-Passage Percolation , 1995 .

[29]  Olle Häggström,et al.  Asymptotic shapes for stationary first passage percolation , 1995 .

[30]  C. Newman,et al.  First Passage Percolation for Random Colorings of $\mathbb{Z}^d$ , 1993 .

[31]  T. Liggett An Improved Subadditive Ergodic Theorem , 1985 .

[32]  D. Boivin Ergodic theorems for surfaces with minimal random weights , 1998 .

[33]  R. Durrett,et al.  Critical behavior of the two-dimensional first passage time , 1986 .

[34]  On the critical behavior of the first passage time in d≥3 , 1991 .

[35]  Rick Durrett,et al.  The Shape of the Limit Set in Richardson's Growth Model , 1981 .

[36]  C. Newman,et al.  Divergence of Shape Fluctuations in Two Dimensions , 1995 .

[37]  Svante Janson,et al.  One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.

[38]  Geoffrey Grimmett,et al.  Probability and Phase Transition , 1994 .

[39]  Robin Pemantle,et al.  Diffusion-limited aggregation on a tree , 1997 .

[40]  J. Wierman Weak moment conditions for time coordinates in first-passage percolation models , 1980, Journal of Applied Probability.

[41]  Timo Seppäläinen,et al.  Exact limiting shape for a simplified model of first-passage percolation on the plane , 1998 .

[42]  Charles M. Newman,et al.  Topics in Disordered Systems , 1997 .

[43]  D. Boivin First passage percolation: The stationary case , 1990 .

[44]  Charles M. Newman,et al.  Infinite clusters in percolation models , 1981 .

[45]  H. Kesten Surfaces with minimal random weights and maximal flows: A higher dimensional version of first-passage percolation , 1987 .

[46]  On the speed of convergence for two-dimensional first passage Ising percolation , 2000 .

[47]  H. Kesten,et al.  A central limit theorem for “critical” first-passage percolation in two dimensions , 1997 .

[48]  J. Wierman,et al.  On Conjectures in First Passage Percolation Theory , 1978 .

[49]  J. Berg A Counterexample to a Conjecture of J.M. Hammersley and D.J.A. Welsh concerning First-Passage Percolation , 1983 .

[50]  Harry Kesten,et al.  On the time constant and path length of first-passage percolation , 1980, Advances in Applied Probability.

[51]  M. Wüthrich Scaling identity for crossing Brownian motion in a Poissonian potential , 1998 .

[52]  R. Smythe Percolation Models in two and Three Dimensions , 1980 .

[53]  Supercritical behaviors in first-passage percolation , 1995 .

[54]  J. Hammersley,et al.  First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory , 1965 .

[55]  J. Doob Stochastic processes , 1953 .

[56]  Geodesics and spanning trees for Euclidean first-passage percolation , 2000, math/0010205.

[57]  Charles M. Newman,et al.  Geodesics in two-dimensional first-passage percolation , 1996 .

[58]  C. D. Howard Lower bounds for point-to-point wandering exponents in Euclidean first-passage percolation , 2000, Journal of Applied Probability.

[59]  Charles M. Newman,et al.  Euclidean models of first-passage percolation , 1997 .

[60]  Planar First-Passage Percolation Times are not Tight , 2004, math/0404050.

[61]  Russell Lyons,et al.  Correction: Random walk in a random environment and first-passage percolation on trees , 1992 .

[62]  R. Smythe,et al.  First-passage percolation on the square lattice. I , 1977, Advances in Applied Probability.

[63]  Maury Bramson,et al.  Perplexing Problems in Probability , 1999 .

[64]  Robin Pemantle,et al.  First passage percolation and a model for competing spatial growth , 1997 .

[65]  First-passage percolation under weak moment conditions , 1979 .

[66]  M. Wüthrich Fluctuation results for Brownian motion in a Poissonian potential , 1998 .

[67]  Donatas Surgailis,et al.  Poisson Broken Lines Process and its Application to Bernoulli First Passage Percolation , 1999 .

[68]  Van den Berg,et al.  Inequalities for the Time Constant in First-Passage Percolation , 1993 .

[69]  ABSENCE OF GEODESICS IN FIRST-PASSAGE PERCOLATION ON A HALF-PLANE , 1998 .

[70]  J. Kingman Subadditive Ergodic Theory , 1973 .

[71]  M. Eden A Two-dimensional Growth Process , 1961 .

[72]  C. D. Howard,et al.  From Greedy Lattice Animals to Euclidean First-Passage Percolation , 1999 .

[73]  J. Wehr,et al.  Fluctuations of extensive functions of quenched random couplings , 1990 .

[74]  J. Friedlander Bounds for L-Functions , 1995 .

[75]  Yu Zhang,et al.  A Limit Theorem for $N_{0n}/n$ in First-Passage Percolation , 1984 .