Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases

[1]  Nicholas J. Booher,et al.  Tools for TAL effector design and target prediction. , 2014, Methods.

[2]  F. Alt,et al.  Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes , 2014, Proceedings of the National Academy of Sciences.

[3]  Bo Zhang,et al.  CasOT: a genome-wide Cas9/gRNA off-target searching tool , 2014, Bioinform..

[4]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[5]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[6]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[7]  J. Keith Joung,et al.  Broad Specificity Profiling of TALENs Results in Engineered Nucleases With Improved DNA Cleavage Specificity , 2014, Nature Methods.

[8]  F. Alt,et al.  IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances , 2014, Proceedings of the National Academy of Sciences.

[9]  F. Alt,et al.  A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. , 2013, The Journal of allergy and clinical immunology.

[10]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[11]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[12]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[13]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[14]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[15]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[16]  Zhi-Xiong Zhou,et al.  Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method , 2013, Genome research.

[17]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[18]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[19]  L. Staudt,et al.  Identification of Early Replicating Fragile Sites that Contribute to Genome Instability , 2013, Cell.

[20]  Yu Zhang,et al.  Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System , 2013, Cell.

[21]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[22]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[23]  Han-Woong Lee,et al.  Knockout mice created by TALEN-mediated gene targeting , 2013, Nature Biotechnology.

[24]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[25]  Ira M. Hall,et al.  YAHA: fast and flexible long-read alignment with optimal breakpoint detection , 2012, Bioinform..

[26]  Volker Brendel,et al.  TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction , 2012, Nucleic Acids Res..

[27]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[28]  Ty C. Voss,et al.  DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes , 2012, Nature.

[29]  Michel C. Nussenzweig,et al.  Translocation-Capture Sequencing Reveals the Extent and Nature of Chromosomal Rearrangements in B Lymphocytes , 2011, Cell.

[30]  Stefano Monti,et al.  Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells , 2011, Cell.

[31]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[32]  Claudio Mussolino,et al.  A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity , 2011, Nucleic acids research.

[33]  Elo Leung,et al.  Targeted Genome Editing Across Species Using ZFNs and TALENs , 2011, Science.

[34]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[35]  Erin L. Doyle,et al.  Targeting DNA Double-Strand Breaks with TAL Effector Nucleases , 2010, Genetics.

[36]  François Stricher,et al.  Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus , 2010, Nucleic Acids Res..

[37]  Daniel G. Miller,et al.  Frequent endonuclease cleavage at off-target locations in vivo. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[39]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[40]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[41]  David J. Chen,et al.  Cellular responses to DNA double-strand breaks after low-dose γ-irradiation , 2009, Nucleic acids research.

[42]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[43]  Hanno Glimm,et al.  High-resolution insertion-site analysis by linear amplification–mediated PCR (LAM-PCR) , 2007, Nature Methods.

[44]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[45]  Michel C. Nussenzweig,et al.  Role of genomic instability and p53 in AID-induced c-myc–Igh translocations , 2006, Nature.

[46]  Michael M. Murphy,et al.  H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. , 2006, Molecular cell.

[47]  Jeffry D Sander,et al.  FLAsH assembly of TALeNs for high-throughput genome editing , 2022 .

[48]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .