Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice

We present a comprehensive a priori error analysis of a practical energy based atomistic/continuum coupling method (Shapeev, arXiv:1010.0512) in two dimensions, for finite-range pair-potential interactions, in the presence of vacancy defects. The majority of the work is devoted to the analysis of consistency and stability of the method. These yield a priori error estimates in the H1-norm and the energy, which depend on the mesh size and the "smoothness" of the atomistic solution in the continuum region. Based on these error estimates, we present heuristics for an optimal choice of the atomistic region and the finite element mesh, which yields convergence rates in terms of the number of degrees of freedom. The analytical predictions are supported by extensive numerical tests.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Christoph Ortner,et al.  THE ROLE OF THE PATCH TEST IN 2D ATOMISTIC-TO-CONTINUUM COUPLING METHODS ∗ , 2011, 1101.5256.

[3]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[4]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .

[5]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[6]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[7]  Siegfried Schmauder,et al.  A New Method for Coupled Elastic-Atomistic Modelling , 1989 .

[8]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[9]  Patrick A. Klein,et al.  Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..

[10]  Xingjie Helen Li,et al.  A Generalized Quasi-Nonlocal Atomistic-to-Continuum Coupling Method with Finite Range Interaction , 2010 .

[11]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[12]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[13]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[14]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Jianfeng Lu,et al.  Convergence of a force-based hybrid method for atomistic and continuum models in three dimension , 2011, 1102.2523.

[16]  Leszek Demkowicz,et al.  On an h-type mesh-refinement strategy based on minimization of interpolation errors☆ , 1985 .

[17]  L. Evans Measure theory and fine properties of functions , 1992 .

[18]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[19]  Endre Süli,et al.  A priori error analysis of two force-based atomistic/continuum models of a periodic chain , 2011, Numerische Mathematik.

[20]  Mariano Giaquinta,et al.  Introduction to Regularity Theory for Nonlinear Elliptic Systems , 1993 .

[21]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[22]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[23]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[24]  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case , 2010 .

[25]  Christoph Ortner,et al.  On the Convergence of Adaptive Nonconforming Finite Element Methods for a Class of Convex Variational Problems , 2011, SIAM J. Numer. Anal..

[26]  Christoph Ortner,et al.  Analysis of the quasicontinuum method , 2006 .

[27]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..

[28]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[29]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.