Valence Bond Solid Order Near Impurities in Two-Dimensional Quantum Antiferromagnets

Recent scanning tunnelling microscopy (STM) experiments on underdoped cuprates have displayed modulations in the local electronic density of states which are centered on a Cu-O-Cu bond (Kohsaka et. al., cond-mat/0703309). As a paradigm of the pinning of such bond-centered ordering in strongly correlated systems, we present the theory of valence bond solid (VBS) correlations near a single impurity in a square lattice antiferromagnet. The antiferromagnet is assumed to be in the vicinity of a quantum transition from a magnetically ordered Neel state to a spin-gap state with long-range VBS order. We identify two distinct classes of impurities: i) local modulation in the exchange constants, and ii) a missing or additional spin, for which the impurity perturbation is represented by an uncompensated Berry phase. The `boundary' critical theory for these classes is developed: in the second class we find a `VBS pinwheel' around the impurity, accompanied by a suppression in the VBS susceptibility. Implications for numerical studies of quantum antiferromagnets and for STM experiments on the cuprates are noted.

[1]  Jonathan Keeling Quantum Magnetism , 2008 .

[2]  A. Oleś,et al.  Unidirectional d-wave superconducting domains in the two-dimensional t-J model , 2007, 0708.0788.

[3]  S. Sachdev,et al.  Impurity spin textures across conventional and deconfined quantum critical points of two-dimensional antiferromagnets , 2007, cond-mat/0703790.

[4]  H. Takagi,et al.  An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates , 2007, Science.

[5]  Michael Levin,et al.  Hole dynamics in an antiferromagnet across a deconfined quantum critical point , 2007, cond-mat/0702119.

[6]  A. Sandvik,et al.  Anomalous curie response of impurities in quantum-critical spin-1/2 Heisenberg antiferromagnets. , 2007, Physical Review Letters.

[7]  L. Balents,et al.  Dual vortex theory of doped Mott insulators , 2006, cond-mat/0612220.

[8]  A. Sandvik,et al.  Impurity induced spin texture in quantum critical 2D antiferromagnets. , 2006, Physical Review Letters.

[9]  A. Sandvik Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. , 2006, Physical review letters.

[10]  A. Kolezhuk,et al.  Theory of quantum impurities in spin liquids , 2006, cond-mat/0606385.

[11]  Bernd Rosenow,et al.  From stripe to checkerboard ordering of charge-density waves on the square lattice in the presence of quenched disorder , 2006, cond-mat/0603029.

[12]  E. Fradkin,et al.  Distinguishing patterns of charge order : Stripes or checkerboards , 2006, cond-mat/0602675.

[13]  L. Balents,et al.  Detecting the quantum zero-point motion of vortices in the cuprate superconductors , 2006, cond-mat/0602429.

[14]  M. Vojta,et al.  Kondo effect in bosonic spin liquids. , 2005, Physical review letters.

[15]  A. Sudbø,et al.  Field- and temperature-induced topological phase transitions in the three-dimensional N-component London superconductor , 2004, cond-mat/0411761.

[16]  L. Balents,et al.  Putting competing orders in their place near the Mott transition , 2004, cond-mat/0408329.

[17]  Michael Levin,et al.  Deconfined quantum criticality and Néel order via dimer disorder , 2004, cond-mat/0405702.

[18]  A. Sudbø,et al.  Critical properties of the N-color london model. , 2004, Physical review letters.

[19]  T. Neuhaus,et al.  Duality and scaling in 3-dimensional scalar electrodynamics , 2004, hep-lat/0402021.

[20]  A. Yazdani,et al.  Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ , 2004, Science.

[21]  A. Sandvik,et al.  Impurity effects at finite temperature in the two-dimensional S = 1 ∕ 2 Heisenberg antiferromagnet , 2004, cond-mat/0402189.

[22]  M. Fisher,et al.  Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm , 2003, cond-mat/0312617.

[23]  M. Fisher,et al.  Deconfined Quantum Critical Points , 2003, Science.

[24]  A. Vishwanath,et al.  Emergent photons and transitions in the O(3) sigma model with hedgehog suppression , 2003, cond-mat/0311222.

[25]  E. Babaev Phase diagram of planar U(l) x U(l) superconductor - Condensation of vortices with fractional flux and a superfluid state , 2002, cond-mat/0201547.

[26]  E. Fradkin,et al.  How to detect fluctuating stripes in the high-temperature superconductors , 2003 .

[27]  M. Vojta,et al.  Quantum impurity in an antiferromagnet: Nonlinear sigma model theory , 2003, cond-mat/0303001.

[28]  Berkeley,et al.  A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ , 2002, Science.

[29]  D. Son Magnetic permeability of near-critical 3d abelian Higgs model and duality , 2002, hep-ph/0201135.

[30]  E. Babaev Vortices with fractional flux in two-gap superconductors and in extended faddeev model. , 2001, Physical review letters.

[31]  B. Hoogenboom,et al.  Linear and field-independent relation between vortex core state energy and gap in Bi(2)Sr(2)CaCu(2)O(8+delta). , 2001, Physical review letters.

[32]  H. Eisaki,et al.  Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ , 2001, Nature.

[33]  C. Buragohain,et al.  Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors , 1999, cond-mat/9912020.

[34]  H. Eisaki,et al.  Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ , 1999, Nature.

[35]  Sachdev,et al.  Quantum impurity in a nearly critical two-dimensional antiferromagnet , 1999, Science.

[36]  Ali Yazdani,et al.  Probing the Local Effects of Magnetic Impurities on Superconductivity , 1997, Science.

[37]  B. Linet,et al.  Scalar Green's functions in an Euclidean space with a conical-type line singularity , 1994 .

[38]  Diehl,et al.  Ordinary, extraordinary, and normal surface transitions: Extraordinary-normal equivalence and simple explanation of ||T-Tc||2- alpha singularities. , 1994, Physical Review B (Condensed Matter).

[39]  Diehl,et al.  Critical behavior at supercritical surface enhancement: Temperature singularity of surface magnetization and order-parameter profile to one-loop order. , 1993, Physical Review B (Condensed Matter).

[40]  Young,et al.  Universal conductivity of two-dimensional films at the superconductor-insulator transition. , 1991, Physical review. B, Condensed matter.

[41]  Littlewood,et al.  Hartree-Fock study of the magnetism in the single-band Hubbard model. , 1991, Physical review. B, Condensed matter.

[42]  G. Murthy,et al.  Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CPN−1 model , 1990 .

[43]  R. Jalabert,et al.  EFFECTIVE LATTICE MODELS FOR TWO-DIMENSIONAL QUANTUM ANTIFERROMAGNETS , 1990 .

[44]  Read,et al.  Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. , 1990, Physical review. B, Condensed matter.

[45]  H. Nakanishi,et al.  Soliton Lattice Modulation of Incommensurate Spin Density Wave in Two Dimensional Hubbard Model -A Mean Field Study- , 1990 .

[46]  O. Gunnarsson,et al.  Charged magnetic domain lines and the magnetism of high-Tc oxides. , 1989, Physical review. B, Condensed matter.

[47]  Read,et al.  Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. , 1989, Physical review letters.

[48]  K. Machida Magnetism in La2CuO4 based compounds , 1989 .

[49]  B. Halperin,et al.  Phase Transition in a Lattice Model of Superconductivity , 1981 .

[50]  S. Samuel Topological symmetry breakdown and quark confinement , 1979 .

[51]  M. Peskin Mandelstam 't Hooft Duality in Abelian Lattice Models , 1978 .

[52]  A. Bray,et al.  Critical behaviour of semi-infinite systems , 1977 .