A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering

The nesting problem is commonly encountered in sheet metal, clothing and shoe-making industries. The nesting problem is a combinatorial optimization problem in which a given set of irregular polygons is required to be placed on a rectangular sheet. The objective is to minimize the length of the sheet while having all polygons inside the sheet without overlap. In this study, a methodology that hybridizes cuckoo search and guided local search optimization techniques is proposed.

[1]  Wai Keung Wong,et al.  Solving the two-dimensional irregular objects allocation problems by using a two-stage packing approach , 2009, Expert Syst. Appl..

[2]  P D Watson,et al.  An efficient algorithm for the regular W1 packing of polygons in the infinite plane , 1999, J. Oper. Res. Soc..

[3]  K. Dowsland,et al.  A tabu thresholding implementation for the irregular stock cutting problem , 1999 .

[4]  K. Dowsland,et al.  Solution approaches to irregular nesting problems , 1995 .

[5]  Toshihide Ibaraki,et al.  Solving the irregular strip packing problem via guided local search for overlap minimization , 2009, Int. Trans. Oper. Res..

[6]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[7]  Kathryn A. Dowsland,et al.  Hybridising Tabu Search with Optimisation Techniques for Irregular Stock Cutting , 2001, Manag. Sci..

[8]  José Fernando Oliveira,et al.  A 2-exchange heuristic for nesting problems , 2002, Eur. J. Oper. Res..

[9]  Ron Wein Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method , 2006, ESA.

[10]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[11]  E. Hopper,et al.  An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem , 2001, Eur. J. Oper. Res..

[12]  S. Jakobs,et al.  European Journal Ofoperational Research on Genetic Algorithms for the Packing of Polygons , 2022 .

[13]  R. Mantegna,et al.  Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Jacek Blazewicz,et al.  Using a tabu search approach for solving the two-dimensional irregular cutting problem , 1993, Ann. Oper. Res..

[15]  Richard Carl Art An approach to the two dimensional irregular cutting stock problem. , 1966 .

[16]  José Fernando Oliveira,et al.  Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming , 2006, Eur. J. Oper. Res..

[17]  José Fernando Oliveira,et al.  TOPOS – A new constructive algorithm for nesting problems , 2000, OR Spectr..

[18]  N. Chernov,et al.  Mathematical model and efficient algorithms for object packing problem , 2010, Comput. Geom..

[19]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[20]  Stephen C. H. Leung,et al.  Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem , 2012, Comput. Oper. Res..

[21]  Kathryn A. Dowsland,et al.  The irregular cutting-stock problem - a new procedure for deriving the no-fit polygon , 2001, Comput. Oper. Res..

[22]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[23]  Hiroshi Nagamochi,et al.  An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem , 2009, Discret. Optim..

[24]  M. V. Novozhilova,et al.  Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem , 1996 .

[25]  Jens Egeblad,et al.  Fast neighborhood search for two- and three-dimensional nesting problems , 2007, Eur. J. Oper. Res..

[26]  E. Tsang,et al.  Guided Local Search , 2010 .

[27]  Kathryn A. Dowsland,et al.  An algorithm for polygon placement using a bottom-left strategy , 2002, Eur. J. Oper. Res..

[28]  A. Ramesh Babu,et al.  A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms , 2001, Comput. Aided Des..

[29]  Thiago de Castro Martins,et al.  An algorithm for the strip packing problem using collision free region and exact fitting placement , 2012, Comput. Aided Des..

[30]  Eva Hopper,et al.  Two-dimensional Packing utilising Evolutionary Algorithms and other Meta-Heuristic Methods , 2002 .

[31]  Jyh-Ming Lien,et al.  Fast and robust 2D Minkowski sum using reduced convolution , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  V. Milenkovic,et al.  Compaction and separation algorithms for non-convex polygons and their applications☆ , 1995 .

[33]  Julia A. Bennell,et al.  A tutorial in irregular shape packing problems , 2009, J. Oper. Res. Soc..

[34]  Pankaj K. Agarwal,et al.  Polygon decomposition for efficient construction of Minkowski sums , 2000, Comput. Geom..

[35]  Antonio Albano,et al.  Optimal Allocation of Two-Dimensional Irregular Shapes Using Heuristic Search Methods , 1980, IEEE Transactions on Systems, Man, and Cybernetics.