Human minisatellite mutation rate after the Chernobyl accident

[1]  K. Hiyama,et al.  Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. , 1995, American journal of human genetics.

[2]  K. Dohi,et al.  Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. , 1995, International journal of radiation biology.

[3]  V. Beral,et al.  Thyroid cancer in the Ukraine , 1995, Nature.

[4]  A. Grosovsky,et al.  Mutational spectrum of X-ray induced TK- human cell mutants. , 1995, Carcinogenesis.

[5]  A. Jeffreys,et al.  Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism , 1994, Nature Genetics.

[6]  I. Novikova,et al.  [Incidence of developmental defects in human embryos in the territory of Byelarus after the accident at the Chernobyl nuclear power station]. , 1994, Genetika.

[7]  A. Grosovsky,et al.  Spectrum of X-ray-induced mutations in the human hprt gene. , 1994, Carcinogenesis.

[8]  A. Jeffreys,et al.  Complex gene conversion events in germline mutation at human minisatellites , 1994, Nature Genetics.

[9]  K. Dohi,et al.  Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. , 1993, International journal of radiation biology.

[10]  A. Jeffreys,et al.  Mouse minisatellite mutations induced by ionizing radiation , 1993, Nature Genetics.

[11]  V. S. Kazakov,et al.  Thyroid cancer after Chernobyl , 1992, Nature.

[12]  M. Orlov,et al.  Radioactive contamination of the territory of Belorussia and Russia after the Chernobyl Nuclear Power Plant disaster , 1992 .

[13]  A. Jeffreys,et al.  Minisatellite repeat coding as a digital approach to DNA typing , 1991, Nature.

[14]  M. Lathrop,et al.  The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. , 1991, Genomics.

[15]  A J Jeffreys,et al.  The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. , 1991, American journal of human genetics.

[16]  J. Kiefer,et al.  Inverse dose-rate effect for the induction of 6-thioguanine-resistant mutants in Chinese hamster V79-S cells by 60Co gamma rays. , 1990, Radiation research.

[17]  J. Ward,et al.  The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. , 1990, International journal of radiation biology.

[18]  J V Neel,et al.  A Review of Forty-five Years Study of Hiroshima and Nagasaki Atomic Bomb Survivors Estimates of the Genetic Doubling Dose of Radiation for Humans , 2022 .

[19]  L. Anspaugh,et al.  The global impact of the Chernobyl reactor accident. , 1988, Science.

[20]  J. Neel,et al.  Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report. , 1988, American journal of human genetics.

[21]  A. Jeffreys,et al.  Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA , 1988, Nature.

[22]  J. Kiefer,et al.  Mitotic recombination in continuously gamma-irradiated diploid yeast. , 1988, Radiation research.

[23]  A. Jeffreys,et al.  Characterization of a panel of highly variable minisatellites cloned from human DNA , 1987, Annals of human genetics.

[24]  S. Tonegawa,et al.  Functional expression of a microinjected Edα gene in C57BL/6 transgenic mice , 1985, Nature.

[25]  Swee Lay Thein,et al.  Hypervariable ‘minisatellite’ regions in human DNA , 1985, Nature.

[26]  Breeders,et al.  Well-being of mankind and genetics , 1980 .

[27]  E. Southern,et al.  Measurement of DNA length by gel electrophoresis. , 1979, Analytical biochemistry.

[28]  A. G. Searle,et al.  Estimates of the genetic risks from ionizing irradiation. , 1971, Mutation research.