Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution
暂无分享,去创建一个
[1] K. Hensel,et al. Leopold Kronecker's Werke , 1895 .
[2] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[3] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .
[4] Lihua Xie,et al. Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).
[5] Lihua Xie,et al. Achieving high resolution for super-resolution via reweighted atomic norm minimization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[6] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[7] Fredrik Andersson,et al. On General Domain Truncated Correlation and Convolution Operators with Finite Rank , 2015 .
[8] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[9] Jean-Yves Tourneret,et al. A New Frequency Estimation Method for Equally and Unequally Spaced Data , 2014, IEEE Transactions on Signal Processing.
[10] Josef A. Nossek,et al. 2D unitary ESPRIT for efficient 2D parameter estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.
[11] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[12] Lihua Xie,et al. Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.
[13] Benjamin Recht,et al. Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.
[14] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[15] Shai Dekel,et al. Super-Resolution on the Sphere Using Convex Optimization , 2014, IEEE Transactions on Signal Processing.
[16] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[17] Tryphon T. Georgiou. The Carathéodory–Fejér–Pisarenko Decomposition and Its Multivariable Counterpart , 2007, IEEE Transactions on Automatic Control.
[18] R. T. Compton,et al. Two dimensional angle and polarization estimation using the ESPRIT algorithm , 1991, Antennas and Propagation Society Symposium 1991 Digest.
[19] Nikos D. Sidiropoulos,et al. Almost-sure identifiability of multidimensional harmonic retrieval , 2001, IEEE Trans. Signal Process..
[20] Yuxin Chen,et al. Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.
[21] Weiyu Xu,et al. Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).
[22] Gongguo Tang,et al. Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).
[23] David C. Lay,et al. Factorization of finite rank Hankel and Toeplitz matrices , 1992 .
[24] Nikos D. Sidiropoulos,et al. Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..
[25] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[26] Petre Stoica,et al. Gridless compressive-sensing methods for frequency estimation: Points of tangency and links to basics , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).
[27] Pál Turán,et al. Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .
[28] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[29] Jun Liu,et al. An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.
[30] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[31] Xiaoli Ma,et al. Ieee Transactions on Signal Processing Multidimensional Frequency Estimation with Finite Snapshots in the Presence of Identical Frequencies , 2022 .
[32] Lihua Xie,et al. Generalized Vandermonde decomposition and its use for multi-dimensional super-resolution , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[33] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[34] Yuxin Chen,et al. Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.
[35] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[36] R. Rochberg. Toeplitz and Hankel operators on the Paley-Wiener space , 1987 .
[37] Yingbo Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..
[38] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[39] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[40] W. Rudin. Real and complex analysis , 1968 .
[41] Reinhard Heckel,et al. Super-Resolution Radar , 2014, ArXiv.
[42] Lihua Xie,et al. On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.
[43] Lihua Xie,et al. Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.
[44] Tryphon T. Georgiou,et al. Signal estimation via selective harmonic amplification: MUSIC, Redux , 2000, IEEE Trans. Signal Process..
[45] Yingbo Hua,et al. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .
[46] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[47] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.