Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution

The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1-D frequency estimation. Many related numerical tools have also been developed for multidimensional (MD), especially 2-D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds for multilevel Toeplitz matrices in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided when the matrix rank is lower than the dimension of each Toeplitz block. A numerical method for searching for a decomposition is also proposed when the matrix rank is higher. The new results are applied to study the MD frequency estimation within the recent super-resolution framework. A precise formulation of the atomic $\ell _{0}$ norm is derived using the Vandermonde decomposition. Practical algorithms for frequency estimation are proposed based on the relaxation techniques. Extensive numerical simulations are provided to demonstrate the effectiveness of these algorithms compared with the existing atomic norm and subspace methods.

[1]  K. Hensel,et al.  Leopold Kronecker's Werke , 1895 .

[2]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[3]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[4]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[5]  Lihua Xie,et al.  Achieving high resolution for super-resolution via reweighted atomic norm minimization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[7]  Fredrik Andersson,et al.  On General Domain Truncated Correlation and Convolution Operators with Finite Rank , 2015 .

[8]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[9]  Jean-Yves Tourneret,et al.  A New Frequency Estimation Method for Equally and Unequally Spaced Data , 2014, IEEE Transactions on Signal Processing.

[10]  Josef A. Nossek,et al.  2D unitary ESPRIT for efficient 2D parameter estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[13]  Benjamin Recht,et al.  Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Shai Dekel,et al.  Super-Resolution on the Sphere Using Convex Optimization , 2014, IEEE Transactions on Signal Processing.

[16]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[17]  Tryphon T. Georgiou The Carathéodory–Fejér–Pisarenko Decomposition and Its Multivariable Counterpart , 2007, IEEE Transactions on Automatic Control.

[18]  R. T. Compton,et al.  Two dimensional angle and polarization estimation using the ESPRIT algorithm , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[19]  Nikos D. Sidiropoulos,et al.  Almost-sure identifiability of multidimensional harmonic retrieval , 2001, IEEE Trans. Signal Process..

[20]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[21]  Weiyu Xu,et al.  Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).

[22]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[23]  David C. Lay,et al.  Factorization of finite rank Hankel and Toeplitz matrices , 1992 .

[24]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[25]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[26]  Petre Stoica,et al.  Gridless compressive-sensing methods for frequency estimation: Points of tangency and links to basics , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[27]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[28]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[29]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[30]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[31]  Xiaoli Ma,et al.  Ieee Transactions on Signal Processing Multidimensional Frequency Estimation with Finite Snapshots in the Presence of Identical Frequencies , 2022 .

[32]  Lihua Xie,et al.  Generalized Vandermonde decomposition and its use for multi-dimensional super-resolution , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[33]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[34]  Yuxin Chen,et al.  Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.

[35]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[36]  R. Rochberg Toeplitz and Hankel operators on the Paley-Wiener space , 1987 .

[37]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[38]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[39]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[40]  W. Rudin Real and complex analysis , 1968 .

[41]  Reinhard Heckel,et al.  Super-Resolution Radar , 2014, ArXiv.

[42]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[43]  Lihua Xie,et al.  Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.

[44]  Tryphon T. Georgiou,et al.  Signal estimation via selective harmonic amplification: MUSIC, Redux , 2000, IEEE Trans. Signal Process..

[45]  Yingbo Hua,et al.  A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .

[46]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[47]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.