Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

[1]  S. Jiang,et al.  Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium- and ytterbium-doped barium cerates for direct methane solid oxide fuel cells , 2015 .

[2]  Qing Xu,et al.  Redox cycling performance of inert-substrate-supported tubular single cells with nickel anode current collector , 2015 .

[3]  Zongping Shao,et al.  Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells. , 2015, ChemSusChem.

[4]  A. Manthiram,et al.  Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells , 2014 .

[5]  M. Li,et al.  BaZr0.1Ce0.7Y0.1Yb0.1O3−δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells , 2014 .

[6]  Huaiyu Zhu,et al.  A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells , 2014 .

[7]  Zongping Shao,et al.  Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. , 2014, ChemSusChem.

[8]  Yongdan Li,et al.  Evaluation of Ni/SDC as anode material for dry CH4 fueled Solid Oxide Fuel Cells , 2014 .

[9]  Qing Xu,et al.  Fabrication and characterization of inert-substrate-supported tubular single cells by dip-coating process , 2014 .

[10]  Zongping Shao,et al.  Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. , 2013, Chemical reviews.

[11]  Qing Xu,et al.  Electrochemical performance of a copper-impregnated Ni–Ce0.8Sm0.2O1.9 anode running on methane , 2013 .

[12]  Jong-Sook Lee,et al.  Polarization mechanism of high temperature electrolysis in a Ni-YSZ/YSZ/LSM solid oxide cell by parametric impedance analysis , 2013 .

[13]  S. Jiang,et al.  Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels , 2012 .

[14]  Zongping Shao,et al.  High performance tubular solid oxide fuel cells with BSCF cathode , 2012 .

[15]  Chang Won Yoon,et al.  In Situ Analyses of Carbon Dissolution into Ni-YSZ Anode Materials , 2012 .

[16]  M. F. Öksüzömer,et al.  The investigation of active Ni/YSZ interlayer for Cu-based direct-methane solid oxide fuel cells , 2012 .

[17]  T. Andreu,et al.  Improvement of oxygen storage capacity using mesoporous ceria–zirconia solid solutions , 2011 .

[18]  Marjan Marinšek Ni-YSZ Degradación de substrato durante la deposición de carbón , 2011 .

[19]  Qing Xu,et al.  Powder morphology modification and sinterability improvement of Ce0.8Sm0.2O1.9 derived from solution combustion process , 2011 .

[20]  Zongping Shao,et al.  Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel , 2011 .

[21]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[22]  S. Chan,et al.  Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell , 2010 .

[23]  F. Tietz,et al.  AC Impedance Characterisation of a La0.8Sr0.2Co0.2Fe0.8O3–δ Electrode , 2009 .

[24]  L. M. Rodriguez-Martinez,et al.  Chemical compatibility between YSZ and SDC sintered at different atmospheres for SOFC applications , 2009 .

[25]  Hwan Moon,et al.  Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating , 2009 .

[26]  M. Shishkin,et al.  The Oxidation of H2 and CH4 on an Oxygen-Enriched Yttria-Stabilized Zirconia Surface: A Theoretical Study Based on Density Functional Theory , 2008 .

[27]  Qing Xu,et al.  Synthesis and performances of Ni-SDC cermets for IT-SOFC anode , 2008 .

[28]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[29]  M. Meunier,et al.  Catalytic activity and performance of LSM cathode materials in single chamber SOFC , 2007 .

[30]  Qing Xu,et al.  Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides , 2007 .

[31]  U. Stimming,et al.  Electrochemical characterization of Ni-Ce0.9Gd0.1O2−δ for SOFC anodes , 2004 .

[32]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[33]  G. Meng,et al.  Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells , 2003 .

[34]  Stephen J. Skinner,et al.  Oxygen ion conductors , 2003 .

[35]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[36]  Kevin Kendall,et al.  Effects of dilution on methane entering an SOFC anode , 2002 .

[37]  N. Sammes,et al.  The chemical reaction between ceria and fully stabilised zirconia , 1999 .

[38]  Caine M. Finnerty,et al.  Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane , 1998 .

[39]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .