A cell model approach for thermal conductivity of nanofluids

This work presents a cell model for predicting the thermal conductivity of nanofluids. Effects due to the high specific surface area of the mono-dispersed nanoparticles and the micro-convective heat transfer enhancement associated with the Brownian motion of particles are addressed in detail. Novelty of the paper lies in its prediction of the non-linear dependence of thermal conductivity of nanofluids on particle volume fraction at low particle concentrations. The model is found to correctly predict the trends observed in experimental data over a wide range of particle sizes, temperatures and particle concentrations.

[1]  B. Yang,et al.  Temperature-dependent thermal conductivity of nanorod-based nanofluids , 2006 .

[2]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[3]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[4]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[5]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[6]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[7]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[8]  F. White Viscous Fluid Flow , 1974 .

[9]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[10]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[11]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[12]  T. Sundararajan,et al.  An analytical model of spray combustion for slowly moving fuel drops , 1992 .

[13]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[14]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[15]  T. Sundararajan,et al.  Hydrodynamics of newtonian fluid flow through assemblages of rigid spherical particles in intermediate reynolds number regime , 1991 .

[16]  Donggeun Lee,et al.  A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. , 2006, The journal of physical chemistry. B.

[17]  P. Meakin,et al.  Effect of aggregation on thermal conduction in colloidal nanofluids , 2006 .

[18]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[19]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[20]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[21]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[22]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[23]  Kenneth D. Kihm,et al.  Thermal Conductivity Enhancement of Nanofluids by Brownian Motion , 2005 .

[24]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[25]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[26]  Lei Gao,et al.  Differential effective medium theory for thermal conductivity in nanofluids , 2006 .