Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2

[1]  P. Ciambelli,et al.  Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts , 2016 .

[2]  P. Ciambelli,et al.  Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2 , 2015 .

[3]  A. Lycourghiotis,et al.  The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios , 2015 .

[4]  P. Fernández-Ibáñez,et al.  Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix , 2015 .

[5]  V. Goetz,et al.  Kinetics and efficiency displayed by supported and suspended TiO2 catalysts applied to the disinfection of Escherichia coli , 2014 .

[6]  Rong Chen,et al.  Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application , 2014, Angewandte Chemie.

[7]  J. M. Doña-Rodríguez,et al.  Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2 , 2014 .

[8]  B. Ohtani,et al.  Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst , 2014 .

[9]  P. Ciambelli,et al.  Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts , 2013 .

[10]  M. Muruganandham,et al.  Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts , 2012, Environmental technology.

[11]  Cynthia Joll,et al.  Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. , 2011, Toxicology.

[12]  Z. Derriche,et al.  Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation , 2007 .

[13]  D. DeMarini,et al.  Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. , 2007, Mutation research.

[14]  R. Amal,et al.  Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water , 2005 .

[15]  Koji Tanaka,et al.  Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) , 2005 .

[16]  Hajime Haneda,et al.  Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde , 2005 .

[17]  Cesar Pulgarin,et al.  Field solar E-coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? , 2004 .

[18]  Wonyong Choi,et al.  Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. , 2004, Water research.

[19]  G. Colón,et al.  Photocatalytic behaviour of sulphated TiO2 for phenol degradation , 2003 .

[20]  R. Amal,et al.  Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions , 2003 .

[21]  G. Colón,et al.  Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation , 2002 .

[22]  J. Araña,et al.  The photocatalytic disinfection of urban waste waters. , 2000, Chemosphere.

[23]  Marta I. Litter,et al.  Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems , 1999 .

[24]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[25]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .