The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.

[1]  Naeem Ali,et al.  Characterization of Electrical Current-Generation Capabilities from Thermophilic Bacterium Thermoanaerobacter pseudethanolicus Using Xylose, Glucose, Cellobiose, or Acetate with Fixed Anode Potentials. , 2015, Environmental science & technology.

[2]  D. R. Bond,et al.  Draft Genome Sequence of the Gram-Positive Thermophilic Iron Reducer Thermincola ferriacetica Strain Z-0001T , 2015, Genome Announcements.

[3]  D. Lovley,et al.  Link between capacity for current production and syntrophic growth in Geobacter species , 2015, Front. Microbiol..

[4]  César I. Torres,et al.  Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens. , 2014, ChemSusChem.

[5]  Hye Suk Byun,et al.  Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components , 2014, Proceedings of the National Academy of Sciences.

[6]  H. Beyenal,et al.  Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes , 2014, Biotechnology and bioengineering.

[7]  H. Kawaguchi,et al.  A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. , 2013, Environmental science & technology.

[8]  Prathap Parameswaran,et al.  Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. , 2013, Environmental science & technology.

[9]  J. Busalmen,et al.  Limitations for current production in Geobacter sulfurreducens biofilms. , 2013, ChemSusChem.

[10]  F. Rossetti,et al.  Confocal Laser Scanning Microscopy as a Tool for the Investigation of Skin Drug Delivery Systems and Diagnosis of Skin Disorders , 2013 .

[11]  J. P. Tomba,et al.  Spectroscopic slicing to reveal internal redox gradients in electricity-producing biofilms. , 2013, Angewandte Chemie.

[12]  H. Nguyen,et al.  pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer , 2012, Biotechnology and bioengineering.

[13]  G. Reguera,et al.  Electron Donors Supporting Growth and Electroactivity of Geobacter sulfurreducens Anode Biofilms , 2011, Applied and Environmental Microbiology.

[14]  J. C. Thrash,et al.  Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell , 2011, Applied and Environmental Microbiology.

[15]  Uwe Schröder,et al.  Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. , 2010, Biosensors & bioelectronics.

[16]  D. Leech,et al.  Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. , 2010, Chemical Communications.

[17]  H. May,et al.  Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica , 2009 .

[18]  Bruce E Rittmann,et al.  Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria , 2008, Biotechnology and bioengineering.

[19]  Prathap Parameswaran,et al.  Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. , 2008, Environmental science & technology.

[20]  H. Ehrlich Are gram‐positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle? , 2008, Geobiology.

[21]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[22]  C. W. Marshall,et al.  Electricity generation by thermophilic microorganisms from marine sediment , 2008, Applied Microbiology and Biotechnology.

[23]  W. Verstraete,et al.  Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer , 2008, Applied Microbiology and Biotechnology.

[24]  Bruce E Rittmann,et al.  Conduction‐based modeling of the biofilm anode of a microbial fuel cell , 2007, Biotechnology and bioengineering.

[25]  Derek R. Lovley,et al.  Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells , 2006, Applied and Environmental Microbiology.

[26]  T. Beveridge,et al.  Application of a pH-Sensitive Fluoroprobe (C-SNARF-4) for pH Microenvironment Analysis in Pseudomonas aeruginosa Biofilms , 2005, Applied and Environmental Microbiology.

[27]  J. Gleason An accurate, non-iterative approximation for studentized range quantiles , 1999 .

[28]  T. Beveridge,et al.  Major sites of metal binding in Bacillus licheniformis walls , 1982, Journal of bacteriology.

[29]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[30]  M. H. Lietzke,et al.  ELECTROMOTIVE FORCE STUDIES IN AQUEOUS SOLUTIONS AT ELEVATED TEMPERATURES. I. THE STANDARD POTENTIAL OF THE SILVER-SILVER CHLORIDE ELECTRODE1 , 1960 .

[31]  Christina Cruickshank Miller The Stokes-Einstein Law for Diffusion in Solution , 1924 .

[32]  J. Wong,et al.  Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. , 2016, Bioresource technology.

[33]  Bruce E Rittmann,et al.  Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. , 2011, Bioresource technology.

[34]  Derek R. Lovley,et al.  Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm , 2009 .

[35]  E. Bonch‐Osmolovskaya,et al.  Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction , 2006, Extremophiles.