The mathematical turns in logic

This chapter provides a short rumination around the theme of Whitehead's remark that still applies today to a considerable extent: namely, the uneasy relationship between mathematics and symbolic logics and now with computing as well. Many large topics are involved, and some are little studied, for example, the history of education in mathematics, logics, computing, and education. The term symbolic logic was introduced to characterize the kind of logic that gave prominence not only to symbols but also to mathematical theories to which they belonged. This discussion of the role of set theory in mathematical logic makes a nice entree to a survey of the differences between the two traditions of symbolic logic. They are very great, but often poorly recognized by logicians and even historians of logic; being symbolic is about the only common factor. They are best illustrated under four headings: (1) theories of collections, (2) principles and properties, (3) relationship with (some) mathematics, and (4) relationship to language.

[1]  T. Crilly From Kant to Hilbert: a sourcebook in the foundations of mathematics , William Ewald (ed.). 2 vols. Pp. 1340. 1999. £50 (Paperback). ISBN 0 19 850537 X (Oxford University Press). , 2000, The Mathematical Gazette.

[2]  F. Rodríguez-Consuegra The Mathematical Philosophy of Bertrand Russell: Origins and Development , 1991 .

[3]  Desmond MacHale,et al.  George Boole: His Life and Work , 1985 .

[4]  Dear Russell, dear Jourdain , 1977 .

[5]  I. Grattan-Guinness,et al.  In memoriam Kurt Go¨del: His 1931 correspondence with zermelo on his incompletability theorem , 1979 .

[6]  Donald A. Martin,et al.  Set Theory and Its Logic. , 1966 .

[7]  Michael Dummett,et al.  Frege: Philosophy of Mathematics. , 1993 .

[8]  Jan Woleński,et al.  Logic and philosophy in the Lvov-Warsaw school , 1988 .

[9]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[10]  Gregory H. Moore Zermelo’s Axiom of Choice , 1982 .

[11]  John Corcoran Gaps between Logical Theory and Mathematical Practice , 1973 .

[12]  H. Weyl Mathematics and Logic , 1946 .

[13]  Joseph Brent,et al.  Charles Sanders Peirce: A Life , 1993 .

[14]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[15]  Abraham Adolf Fraenkel,et al.  Abstract set theory , 1953 .

[16]  Graham Hoare,et al.  Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics , 1999, The Mathematical Gazette.

[17]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[18]  T. Mormann,et al.  The Space of Mathematics: Philosophical, Epistemological, and Historical Explorations , 1992 .

[19]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[20]  Mario Bunge,et al.  The methodological unity of science , 1973 .

[21]  Erwin Engeler,et al.  Languages with expressions of infinite length , 1966 .

[22]  Michael Scanlan Who Were the American Postulate Theorists , 1991, J. Symb. Log..

[23]  Hao Wang EIGHTY YEARS OF FOUNDATIONAL STUDIES , 1958 .

[24]  C. Mangione,et al.  Storia della logica : da Boole ai nostri giorni , 1993 .

[25]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[26]  Robert H. Anderson,et al.  A Source Book , 1995 .

[27]  Volker Peckhaus,et al.  Logik, Mathesis universalis und allgemeine Wissenschaft : Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert , 1997 .

[28]  Alberto Coffa,et al.  The semantic tradition from Kant to Carnap , 1991 .

[29]  Jan Woleński,et al.  Alfred Tarski and the Vienna Circle , 1999 .

[30]  Christopher S. Hill,et al.  Mechanism, Mentalism and Metamathematics , 1980 .

[31]  Friedrich Stadler,et al.  Studien zum Wiener Kreis : Ursprung, Entwicklung und Wirkung des Logischen Empirismus im Kontext , 1997 .

[32]  David Hilbert,et al.  Über die Entstehung von David Hilberts "Grundlagen der Geometrie" , 1986 .

[33]  Volker Peckhaus Hilbertprogramm und kritische Philosophie : das Göttinger Modell interdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie , 1990 .

[34]  Jean Cavaillès,et al.  Methode axiomatique et formalisme , 1938 .

[35]  Daniel D. Merrill Augustus De Morgan and the Logic of Relations , 1990 .

[36]  N. Rescher Many Valued Logic , 1969 .

[37]  Michael Hallett Cantorian set theory and limitation of size , 1984 .

[38]  I. Grattan-Guinness Mathematics and Symbolic Logics: Some Notes on an Uneasy Relationship , 1999 .

[39]  Ivor Grattan-Guinness,et al.  From the calculus to set theory, 1630-1910 : an introductory history , 1985 .

[40]  Herman H. Goldstine The Computer from Pascal to von Neumann , 1972 .

[41]  I. Grattan-Guinness On the Development of Logics Between the Two World Wars , 1981 .

[42]  William Ewald From Kant to Hilbert , 1996 .

[43]  S. Lane Mathematics, Form and Function , 1985 .