Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network

[1]  Edward E. Smith,et al.  Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain , 2004, Science.

[2]  F. Benedetti,et al.  Conscious Expectation and Unconscious Conditioning in Analgesic, Motor, and Hormonal Placebo/Nocebo Responses , 2003, The Journal of Neuroscience.

[3]  Christian Büchel,et al.  Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices , 2003, NeuroImage.

[4]  C. Büchel,et al.  Subcortical structures involved in pain processing: evidence from single-trial fMRI , 2002, PAIN.

[5]  C Büchel,et al.  Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. , 2002, Brain : a journal of neurology.

[6]  P. Petrovic,et al.  Placebo and Opioid Analgesia-- Imaging a Shared Neuronal Network , 2002, Science.

[7]  Krish D. Singh,et al.  fMRI of Thermal Pain: Effects of Stimulus Laterality and Attention , 2002, NeuroImage.

[8]  C. Büchel,et al.  Dissociable Neural Responses Related to Pain Intensity, Stimulus Intensity, and Stimulus Awareness within the Anterior Cingulate Cortex: A Parametric Single-Trial Laser Functional Magnetic Resonance Imaging Study , 2002, The Journal of Neuroscience.

[9]  H. Fields,et al.  Pain modulation: expectation, opioid analgesia and virtual pain. , 2000, Progress in brain research.

[10]  J. Rowlingson,et al.  Textbook of Pain , 2015 .

[11]  M. Honda,et al.  Expectation of Pain Enhances Responses to Nonpainful Somatosensory Stimulation in the Anterior Cingulate Cortex and Parietal Operculum/Posterior Insula: an Event-Related Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[12]  G. Borszcz,et al.  Amygdaloid-thalamic interactions mediate the antinociceptive action of morphine microinjected into the periaqueductal gray. , 2000, Behavioral neuroscience.

[13]  J. Spiegel,et al.  Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials , 2000, Clinical Neurophysiology.

[14]  Ronald Melzack,et al.  From the gate to the neuromatrix , 1999, Pain.

[15]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[16]  F. Benedetti,et al.  Somatotopic Activation of Opioid Systems by Target-Directed Expectations of Analgesia , 1999, The Journal of Neuroscience.

[17]  B Conrad,et al.  Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. , 1999, AJNR. American journal of neuroradiology.

[18]  J. Price,et al.  Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys , 1998, The Journal of comparative neurology.

[19]  P. Bellgowan,et al.  Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla , 1998, Brain Research.

[20]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[21]  L. Jasmin,et al.  An Opioidergic Cortical Antinociception Triggering Site in the Agranular Insular Cortex of the Rat that Contributes to Morphine Antinociception , 1996, The Journal of Neuroscience.

[22]  R. Mathur,et al.  Amygdalar involvement in pain. , 1995, Indian journal of physiology and pharmacology.

[23]  M. Behbehani Functional characteristics of the midbrain periaqueductal gray , 1995, Progress in Neurobiology.

[24]  M. George Neurobiology of Cingulate Cortex and Limbic Thalamus , 1994, Neurology.

[25]  M. Fanselow Neural organization of the defensive behavior system responsible for fear , 1994, Psychonomic bulletin & review.

[26]  C. Sorenson,et al.  Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges , 1994, Brain Research.

[27]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[28]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[29]  P. Bellgowan,et al.  Lesions of the amygdala block conditional hypoalgesia on the tail flick test , 1993, Brain Research.

[30]  B. Vogt,et al.  Anterior Cingulate Cortex and the Medial Pain System , 1993 .

[31]  J M Besson,et al.  Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. , 1992, Journal of neurophysiology.

[32]  P. Mason,et al.  Neurotransmitters in nociceptive modulatory circuits. , 1991, Annual review of neuroscience.

[33]  Bernard Jf,et al.  [Convergence of nociceptive information on the parabrachio-amygdala neurons in the rat]. , 1988 .

[34]  J. Besson,et al.  [Convergence of nociceptive information on the parabrachio-amygdala neurons in the rat]. , 1988, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[35]  A I Basbaum,et al.  Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. , 1984, Annual review of neuroscience.

[36]  R. Melzack,et al.  Stimulation-produced analgesia: Evidence for somatotopic organization in the midbrain , 1982, Brain Research.

[37]  P. Mantyh Forebrain projections to the periaqueductral gray in the monkey, with observations in the cat and rat , 1982, The Journal of comparative neurology.

[38]  H. Fields,et al.  MECHANISM OF PLACEBO ANALGESIA , 1978, The Lancet.

[39]  T. Yaksh,et al.  Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray , 1976, Brain Research.

[40]  J. Gibbs Letter: Treatment of excessive axillary sweating. , 1974, Lancet.