Impact of directional walk on atom probe microanalysis

Abstract In the atom probe microanalysis of steels, inconsistencies in the measured compositions of solutes (C, N) have often been reported, as well as their appearance as molecular ions. Here we propose that these issues might arise from surface migration of solute atoms over the specimen surface. Surface migration of solutes is evidenced by field-ion microscopy observations, and its consequences on atom probe microanalysis are detailed for a wide range of solute (P, Si, Mn, B, C and N). It is proposed that directional walk driven by field gradients over the specimen surface and thermally activated is the prominent effect.

[1]  G. Kellogg Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe , 1981 .

[2]  Baptiste Gault,et al.  Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. , 2009, Ultramicroscopy.

[3]  Baptiste Gault,et al.  Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography , 2010 .

[4]  A. Alavi,et al.  Field-evaporation from first-principles , 2004 .

[5]  Baptiste Gault,et al.  Spatial Resolution in Atom Probe Tomography , 2010, Microscopy and Microanalysis.

[6]  David N. Seidman,et al.  On the atomic resolution of a field ion microscope , 1971 .

[7]  D. Kingham The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states , 1982 .

[8]  B. Gault,et al.  Design of a femtosecond laser assisted tomographic atom probe , 2006 .

[9]  T. Tsong,et al.  Field and temperature dependence of the directional walk of single adsorbed W atoms on the W(110) plane , 1982 .

[10]  T. Tsong Mechanisms of surface diffusion , 2001 .

[11]  T. Tsong Dissociation of diatomic clusters by a sequence of thermal activations, and adatomic interaction☆ , 1975 .

[12]  J. Takahashi,et al.  Anomalous distribution in atom map of solute carbon in steel. , 2011, Ultramicroscopy.

[13]  F. De Geuser,et al.  Clustering and nearest neighbour distances in atom-probe tomography. , 2009, Ultramicroscopy.

[14]  J. D. Olson,et al.  Advances in Pulsed-Laser Atom Probe: Instrument and Specimen Design for Optimum Performance , 2007, Microscopy and Microanalysis.

[15]  M. Brunel,et al.  Toward a laser assisted wide‐angle tomographic atom‐probe , 2007 .

[16]  B Gault,et al.  Advances in the reconstruction of atom probe tomography data. , 2011, Ultramicroscopy.

[17]  A. Deschamps,et al.  TEM study of NbC heterogeneous precipitation in ferrite , 2006 .

[18]  Tien T. Tsong,et al.  Field-Ion Microscope Observations of Indirect Interaction between Adatoms on Metal Surfaces , 1973 .

[19]  W. Lefebvre,et al.  Determination of matrix composition based on solute‐solute nearest‐neighbor distances in atom probe tomography , 2011, Microscopy research and technique.

[20]  A. Moore,et al.  Field evaporation end forms of tungsten , 1974 .

[21]  Suklyun Hong Surface energy anisotropy of iron surfaces by carbon adsorption , 2003 .

[22]  J. D. Olson,et al.  First Data from a Commercial Local Electrode Atom Probe (LEAP) , 2004, Microscopy and Microanalysis.

[23]  Brian P. Gorman,et al.  Atom Probe Tomography of Electronic Materials , 2007 .

[24]  D. J. Rose,et al.  High-Frequency Gas Discharge Plasma in Hydrogen , 1955 .

[25]  Tien T. Tsong,et al.  Direct observation of the directional walk of single adatoms and the adatom polarizability , 1975 .

[26]  E. Müller,et al.  THE FIELD ION MICROSCOPICAL IMAGE OF AN ORDERED PLATINUM‐COBALT ALLOY , 1966 .

[27]  S. Ringer,et al.  Contingency table techniques for three dimensional atom probe tomography , 2007, Microscopy research and technique.

[28]  D. Larson,et al.  Performance Advantages of a Modern, Ultra-High Mass Resolution Atom Probe , 2008, Microscopy and Microanalysis.

[29]  D. Bassett The thermal stability and rearrangement of field-evaporated tungsten surfaces , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  G. Ehrlich,et al.  Jump processes in surface diffusion , 2007 .

[31]  R. Haydock,et al.  Post-Ionization of Field-Evaporated Ions , 1980 .

[32]  D. Bassett Surface atom displacement processes , 1975 .

[33]  G. Smith,et al.  An atom probe study of the anomalous field evaporation of alloys containing silicon , 1981 .

[34]  J. Takahashi,et al.  The study of quantitativeness in atom probe analysis of alloying elements in steel. , 2009, Ultramicroscopy.

[35]  Baptiste Gault,et al.  Origin of the spatial resolution in atom probe microscopy , 2009 .

[36]  D. Blavette,et al.  Atom Probe Tomography I. Early Stages of Precipitation of NbC and NbN in Ferritic Steels , 2006 .

[37]  D. Tice,et al.  The stability of W2 and WRe adatom clusters on (110) tungsten surfaces , 1973 .

[38]  D. Blavette,et al.  On the development of a 3D tomographic atom-probe , 1993 .

[39]  Baptiste Gault,et al.  Correlated field evaporation as seen by atom probe tomography , 2007 .

[40]  Thermal Rearrangement of a Perfectly Ordered Tungsten Surface , 1963, Nature.

[41]  W. Sha,et al.  Some aspects of atom-probe analysis of FeC and FeN systems , 1992 .

[42]  B. Deconihout,et al.  Thermal response of a field emitter subjected to ultra-fast laser illumination , 2009 .

[43]  David N. Seidman,et al.  Three-Dimensional Atom-Probe Tomography: Advances and Applications , 2007 .

[44]  G. Kellogg,et al.  Direct observation of surface diffusion and atomic interactions on metal surfaces , 1978 .

[45]  E. Boyes,et al.  Investigations of field evaporation with a field-desorption microscope , 1976 .

[46]  H. Stolz,et al.  Desorption kinetics and surface diffusion of potassium, rubidium and cesium on a silicon(111)7×7-surface , 1992 .

[47]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[48]  M. Scheffler,et al.  Theory of adsorption and desorption in high electric fields , 1993 .

[49]  T. Epicier,et al.  EELS study of niobium carbo-nitride nano-precipitates in ferrite. , 2006, Micron.

[50]  S. Ringer,et al.  On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra , 2010 .

[51]  E. Müller The atom-probe field ion microscope , 1970, Die Naturwissenschaften.

[52]  M. K. Miller,et al.  The development of atom probe field-ion microscopy , 2000 .

[53]  B. Gault,et al.  Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions , 2008 .

[54]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[55]  R Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[56]  Reiner Kirchheim,et al.  Exploring the next neighbourhood relationship in amorphous alloys utilizing atom probe tomography. , 2007, Ultramicroscopy.

[57]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[58]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[59]  A.J.W. Moore,et al.  The structure of atomically smooth spherical surfaces , 1962 .

[60]  M. Parsley,et al.  CORRIGENDUM: The effect of an electric field on the surface diffusion of rhenium adsorbed on tungsten , 1969 .

[61]  M. Alcamí,et al.  Ionization potentials, dissociation energies and statistical fragmentation of neutral and positively charged small carbon clusters , 2006 .