Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart.

Three major mammalian mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal protein kinase (JNK), have been identified in the cardiomyocyte, but their respective roles in the heart are not well understood. The present study explored their functions and cross talk in ischemia/reoxygenation (I/R)-induced cardiac apoptosis. Exposing rat neonatal cardiomyocytes to ischemia resulted in a rapid and transient activation of ERK, p38, and JNK. On reoxygenation, further activation of all 3 mitogen-activated protein kinases was noted; peak activities increased (fold) by 5.5, 5.2, and 6.2, respectively. Visual inspection of myocytes exposed to I/R identified 18.6% of the cells as showing morphological features of apoptosis, which was further confirmed by DNA ladder and terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL). Myocytes treated with PD98059, a MAPK/ERK kinase (MEK1/MEK2) inhibitor, displayed a suppression of I/R-induced ERK activation, whereas p38 and JNK activities were increased by 70.3% and 55.0%, respectively. In addition, the number of apoptotic cells was increased to 33.4%. With pretreatment of cells with SB242719, a selective p38 inhibitor, or SB203580, a p38 and JNK2 inhibitor, I/R+PD98059-induced apoptotic cells were reduced by 42.8% and 63.3%, respectively. Hearts isolated from rats treated with PD98059 and subjected to global ischemia (30 minutes)/reoxygenation (1 hour) showed a diminished functional recovery compared with the vehicle group. Coadministration of SB203580 attenuated the detrimental effects of PD98059 and significantly improved cardiac functional recovery. The data taken together suggest that ERK plays a protective role, whereas p38 and JNK mediate apoptosis in cardiomyocytes subjected to I/R, and the dynamic balance of their activities is critical in determining cardiomyocyte fate subsequent to reperfusional injury.

[1]  T. Yue,et al.  Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. , 1999, Circulation.

[2]  D. Mochly‐Rosen,et al.  An Inhibitor of p38 Mitogen-activated Protein Kinase Protects Neonatal Cardiac Myocytes from Ischemia* , 1999, The Journal of Biological Chemistry.

[3]  T. Yue,et al.  TL1, a Novel Tumor Necrosis Factor-like Cytokine, Induces Apoptosis in Endothelial Cells , 1999, The Journal of Biological Chemistry.

[4]  John C. Lee,et al.  Inhibition of p 38 Mitogen-Activated Protein Kinase Decreases Cardiomyocyte Apoptosis and Improves Cardiac Function After Myocardial Ischemia and Reperfusion , 1999 .

[5]  E. Furshpan,et al.  Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Clerk,et al.  "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. , 1998, Circulation research.

[7]  W. Ansorge,et al.  Differential regulation of c‐Jun by ERK and JNK during PC12 cell differentiation , 1998, The EMBO journal.

[8]  Shuang Huang,et al.  Induction of Apoptosis by SB202190 through Inhibition of p38β Mitogen-activated Protein Kinase* , 1998, Journal of Biological Chemistry.

[9]  A. Clerk,et al.  The p38‐MAPK inhibitor, SB203580, inhibits cardiac stress‐activated protein kinases/c‐Jun N‐terminal kinases (SAPKs/JNKs) , 1998, FEBS letters.

[10]  D. Zechner,et al.  MKK6 Activates Myocardial Cell NF-κB and Inhibits Apoptosis in a p38 Mitogen-activated Protein Kinase-dependent Manner* , 1998, The Journal of Biological Chemistry.

[11]  Y. Ip,et al.  Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. , 1998, Current opinion in cell biology.

[12]  A. Clerk,et al.  Stimulation of “Stress-regulated” Mitogen-activated Protein Kinases (Stress-activated Protein Kinases/c-Jun N-terminal Kinases and p38-Mitogen-activated Protein Kinases) in Perfused Rat Hearts by Oxidative and Other Stresses* , 1998, The Journal of Biological Chemistry.

[13]  N. Maulik,et al.  Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. , 1998, Free radical biology & medicine.

[14]  Jiahuai Han,et al.  Cardiac Hypertrophy Induced by Mitogen-activated Protein Kinase Kinase 7, a Specific Activator for c-Jun NH2-terminal Kinase in Ventricular Muscle Cells* , 1998, The Journal of Biological Chemistry.

[15]  T. Yue,et al.  Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. , 1998, Journal of molecular and cellular cardiology.

[16]  T. Yue,et al.  Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. , 1998, Circulation research.

[17]  J Ross,et al.  Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family* , 1998, The Journal of Biological Chemistry.

[18]  B. Lopez,et al.  Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. , 1997, Cardiovascular research.

[19]  Y. Zou,et al.  Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. , 1997, The Journal of clinical investigation.

[20]  A. Clerk,et al.  Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. , 1997, Cellular signalling.

[21]  M. Cobb,et al.  Mitogen-activated protein kinase pathways. , 1997, Current opinion in cell biology.

[22]  D. Leroith,et al.  Insulin-like Growth Factor 1 Inhibits Apoptosis Using the Phosphatidylinositol 3′-Kinase and Mitogen-activated Protein Kinase Pathways* , 1997, The Journal of Biological Chemistry.

[23]  Michael Karin,et al.  Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-κB Activation Prevents Cell Death , 1996, Cell.

[24]  A. Ashworth,et al.  Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. , 1996, Circulation research.

[25]  G. Johnson,et al.  Fibroblast Growth Factor-2 Suppression of Tumor Necrosis Factor α-Mediated Apoptosis Requires Ras and the Activation of Mitogen-activated Protein Kinase* , 1996, The Journal of Biological Chemistry.

[26]  J. Avruch,et al.  Stress-activated protein kinases in cardiovascular disease. , 1996, Circulation research.

[27]  D. Buxton,et al.  Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. , 1996, Biochemical and biophysical research communications.

[28]  E. Gelfand,et al.  Selective Activation of c-Jun Kinase Mitogen-activated Protein Kinase by CD40 on Human B Cells (*) , 1995, The Journal of Biological Chemistry.

[29]  Philip R. Cohen,et al.  PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-activated Protein Kinase Kinase in Vitro and in Vivo(*) , 1995, The Journal of Biological Chemistry.

[30]  A. Bridges,et al.  A synthetic inhibitor of the mitogen-activated protein kinase cascade. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  N. Ahn,et al.  Transformation of mammalian cells by constitutively active MAP kinase kinase. , 1994, Science.

[32]  C. Marshall,et al.  Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells , 1994, Cell.